找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
41#
發(fā)表于 2025-3-28 18:30:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:31:46 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:26 | 只看該作者
J. Vielkind,M. Schwab,F. AndersIn general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
44#
發(fā)表于 2025-3-29 04:17:31 | 只看該作者
Dynamical Systems with One Degree of Freedom,Consider a class of autonomous continuous-time dynamical systems whose state at any time can be unambiguously given by a variable . and its derivative .. The phase space of such a system is the phase plane (., .). Thus, the phase space dimension is . = 2 and the number of degrees of freedom is ..
45#
發(fā)表于 2025-3-29 10:16:45 | 只看該作者
,The Anishchenko–Astakhov Oscillator of Chaotic Self-Sustained Oscillations,In general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
46#
發(fā)表于 2025-3-29 12:18:53 | 只看該作者
https://doi.org/10.1007/978-3-319-06871-8Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
47#
發(fā)表于 2025-3-29 18:52:46 | 只看該作者
978-3-319-37852-7Springer International Publishing Switzerland 2014
48#
發(fā)表于 2025-3-29 20:56:11 | 只看該作者
Cesar Petri,Ralph Scorza,Chris Dardick natural sciences. It amounts to finding a law that enables us to define the future state of the system at a time . > .. when given some information on the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe ei
49#
發(fā)表于 2025-3-30 00:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 阿拉善盟| 海城市| 峨眉山市| 阜新市| 东乌| 横山县| 徐闻县| 罗江县| 吉林省| 巴东县| 金塔县| 阜阳市| 青神县| 天台县| 澜沧| 朝阳县| 油尖旺区| 华安县| 黄骅市| 瓮安县| 富川| 磐安县| 沁水县| 万载县| 连州市| 台东县| 太谷县| 葫芦岛市| 隆昌县| 双辽市| 方城县| 鄂托克旗| 汤阴县| 当阳市| 南通市| 柘城县| 衡阳县| 孝感市| 柳河县| 丰原市|