找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 11:24:56 | 只看該作者
12#
發(fā)表于 2025-3-23 13:53:46 | 只看該作者
Synchronization of Two-Frequency Self-Sustained Oscillations,ect of mutual synchronization that corresponds to rational values of the Poincaré winding number. In this case synchronization regions are characterized by the so-called Arnold tongues, where the winding number . satisfies the condition . = .: ., with . and . positive integers.
13#
發(fā)表于 2025-3-23 21:26:24 | 只看該作者
Synchronization of Chaotic Oscillations, In connection with the development of nonlinear dynamics and the theory of dynamical chaos, the question of synchronization of chaotic oscillations inevitably arises. Being the fundamental property of self-sustained oscillatory systems, synchronization must also be observed in one form or another i
14#
發(fā)表于 2025-3-24 00:06:19 | 只看該作者
15#
發(fā)表于 2025-3-24 03:03:45 | 只看該作者
Dynamical Systems,n the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe either the temporal or the spatio-temporal evolution of the system.
16#
發(fā)表于 2025-3-24 07:52:41 | 只看該作者
Bifurcations of Dynamical Systems, physical problems lead to differential equations or maps which depend on one or several parameters. Fixing parameter values determines the type of solutions for given initial conditions, while variation of these values may result in both quantitative and qualitative changes in the nature of the solutions.
17#
發(fā)表于 2025-3-24 14:02:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:05:40 | 只看該作者
19#
發(fā)表于 2025-3-24 22:42:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:25:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂川县| 五峰| 固阳县| 谢通门县| 开江县| 工布江达县| 凌源市| 高碑店市| 清河县| 喀喇沁旗| 聂荣县| 江油市| 洪江市| 淅川县| 辽中县| 舞阳县| 北川| 朝阳县| 什邡市| 白城市| 璧山县| 孟连| 南乐县| 米林县| 柳林县| 汉沽区| 泰州市| 黄梅县| 于田县| 大悟县| 日土县| 秦皇岛市| 江达县| 五原县| 疏勒县| 海淀区| 滨海县| 东兰县| 临夏县| 定日县| 咸宁市|