找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dense Image Correspondences for Computer Vision; Tal Hassner,Ce Liu Book 2016 Springer International Publishing Switzerland 2016 Annotatio

[復(fù)制鏈接]
樓主: hydroxyapatite
21#
發(fā)表于 2025-3-25 05:49:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:21:16 | 只看該作者
SIFTpack: A Compact Representation for Efficient SIFT Matchings large, as is often the case, computing these distances can be extremely time consuming. We propose the SIFTpack: a compact way of storing SIFT descriptors, which enables significantly faster calculations between sets of SIFTs than the current solutions. SIFTpack can be used to represent SIFTs dens
23#
發(fā)表于 2025-3-25 13:22:28 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:28 | 只看該作者
Depth Transfer: Depth Extraction from Videos Using Nonparametric Samplingrate this method in cases where existing methods fail (nontranslating cameras and dynamic scenes). This technique is applicable to single images as well as videos. For videos, local motion cues are used to improve the inferred depth maps, while optical flow is used to ensure temporal depth consisten
26#
發(fā)表于 2025-3-26 02:34:52 | 只看該作者
Nonparametric Scene Parsing via Label Transferels for images, scenes, and objects. In this chapter, we propose a novel, nonparametric approach for object recognition and scene parsing using a new technology we name .. For an input image, our system first retrieves its nearest neighbors from a large database containing fully annotated images. Th
27#
發(fā)表于 2025-3-26 07:02:05 | 只看該作者
Joint Inference in Weakly-Annotated Image Datasets via Dense Correspondenceision rely on a large corpus of densely labeled images. However, for large, modern image datasets, such labels are expensive to obtain and are often unavailable. We establish a large-scale graphical model spanning all labeled and unlabeled images, then solve it to infer pixel labels . for all images
28#
發(fā)表于 2025-3-26 11:14:43 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:53 | 只看該作者
DOMAINS – A Dynamics Ontology: Perdurantsxplore the scale changes. Our approach achieves a similar performance as the SIFT flow method for natural scenes but obtains significant improvement for the images with large scale differences. Compared with a recent method that addresses a similar problem, our approach shows its advantage being more effective and efficient.
30#
發(fā)表于 2025-3-26 19:32:59 | 只看該作者
DOMAINS – An Ontology: Internal Qualitiesn time, for both finding nearest neighbors and computing all distances between all descriptors. The usefulness of SIFTpack is demonstrated as an alternative implementation for .-means dictionaries of visual words and for image retrieval.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 18:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大连市| 白山市| 昔阳县| 太和县| 上思县| 黑水县| 内黄县| 岱山县| 晋州市| 廊坊市| 新龙县| 峨边| 镇安县| 安新县| 江津市| 杭州市| 鲁山县| 浦县| 革吉县| 栾城县| 乌兰浩特市| 吴堡县| 阳信县| 合水县| 阜平县| 石嘴山市| 永靖县| 和田县| 江孜县| 松桃| 屏东县| 新营市| 蒙自县| 陇南市| 壤塘县| 增城市| 蓬莱市| 英山县| 东丽区| 密云县| 思南县|