找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dense Image Correspondences for Computer Vision; Tal Hassner,Ce Liu Book 2016 Springer International Publishing Switzerland 2016 Annotatio

[復(fù)制鏈接]
查看: 50488|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:19:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dense Image Correspondences for Computer Vision
編輯Tal Hassner,Ce Liu
視頻videohttp://file.papertrans.cn/266/265604/265604.mp4
概述Provides in-depth coverage of dense-correspondence estimation.Covers both the breadth and depth of new achievements in dense correspondence estimation and their applications.Includes information for d
圖書封面Titlebook: Dense Image Correspondences for Computer Vision;  Tal Hassner,Ce Liu Book 2016 Springer International Publishing Switzerland 2016 Annotatio
描述This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code and data, necessary for expediting the development of effective correspondence-based computer vision systems.
出版日期Book 2016
關(guān)鍵詞Annotation Propagation; Data Driven; Dense Correspondence Estimation; Dense Correspondences; Dense Pixel
版次1
doihttps://doi.org/10.1007/978-3-319-23048-1
isbn_softcover978-3-319-35914-4
isbn_ebook978-3-319-23048-1
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Dense Image Correspondences for Computer Vision影響因子(影響力)




書目名稱Dense Image Correspondences for Computer Vision影響因子(影響力)學(xué)科排名




書目名稱Dense Image Correspondences for Computer Vision網(wǎng)絡(luò)公開度




書目名稱Dense Image Correspondences for Computer Vision網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dense Image Correspondences for Computer Vision被引頻次




書目名稱Dense Image Correspondences for Computer Vision被引頻次學(xué)科排名




書目名稱Dense Image Correspondences for Computer Vision年度引用




書目名稱Dense Image Correspondences for Computer Vision年度引用學(xué)科排名




書目名稱Dense Image Correspondences for Computer Vision讀者反饋




書目名稱Dense Image Correspondences for Computer Vision讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:16 | 只看該作者
978-3-319-35914-4Springer International Publishing Switzerland 2016
板凳
發(fā)表于 2025-3-22 01:51:28 | 只看該作者
地板
發(fā)表于 2025-3-22 07:27:02 | 只看該作者
http://image.papertrans.cn/d/image/265604.jpg
5#
發(fā)表于 2025-3-22 09:53:12 | 只看該作者
Automating the Requirement Analysisotion is estimated when the underlying motion is . and ., especially the Horn–Schunck (Artif Intell 17:185–203, 1981) formulation with robust functions. We show step-by-step how to optimize the optical flow objective function using iteratively reweighted least squares (IRLS), which is equivalent to
6#
發(fā)表于 2025-3-22 15:32:31 | 只看該作者
Domain Modeling-Based Software Engineeringging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose scale-invariant feature transform ., a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching
7#
發(fā)表于 2025-3-22 17:37:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:04:51 | 只看該作者
DOMAINS – A Dynamics Ontology: Perdurantsimilar scenes but with different object configurations. The way in which the dense SIFT features are computed at a fixed scale in the SIFT flow method might however limit its capability of dealing with scenes having great scale changes. In this work, we propose a simple, intuitive, and effective app
9#
發(fā)表于 2025-3-23 01:47:22 | 只看該作者
DOMAINS – A Taxonomy: External Qualitiesel transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information
10#
發(fā)表于 2025-3-23 09:16:40 | 只看該作者
DOMAINS – An Ontology: Internal Qualitiess large, as is often the case, computing these distances can be extremely time consuming. We propose the SIFTpack: a compact way of storing SIFT descriptors, which enables significantly faster calculations between sets of SIFTs than the current solutions. SIFTpack can be used to represent SIFTs dens
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁河县| 阜宁县| 七台河市| 克什克腾旗| 平遥县| 利津县| 信丰县| 长海县| 德保县| 江门市| 陈巴尔虎旗| 旬邑县| 德格县| 葫芦岛市| 吉隆县| 锡林郭勒盟| 孟连| 玉林市| 比如县| 朝阳县| 葫芦岛市| 河源市| 阿巴嘎旗| 兰考县| 清涧县| 石河子市| 平阴县| 民乐县| 义乌市| 嘉祥县| 易门县| 蒲江县| 安顺市| 平泉县| 丹阳市| 定州市| 义乌市| 临海市| 鄂伦春自治旗| 长宁县| 南华县|