找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Koro?ec Book 2022 The Editor(s) (if

[復(fù)制鏈接]
樓主: 麻煩
11#
發(fā)表于 2025-3-23 11:20:50 | 只看該作者
Book 2022es?used to analyze?algorithm performance?in a range of common?scenarios, while also addressing?issues that are often overlooked.?In turn, it?shows how these issues can be easily avoided by applying?the?principles?that have produced?Deep Statistical Comparison and its variants. The focus is on statis
12#
發(fā)表于 2025-3-23 17:08:56 | 只看該作者
Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms978-3-030-96917-2Series ISSN 1619-7127 Series E-ISSN 2627-6461
13#
發(fā)表于 2025-3-23 18:04:47 | 只看該作者
https://doi.org/10.1007/978-90-481-9106-2timization algorithm with the performances of other, state-of-the-art algorithms. Additionally, there is a brief explanation of all the chapters to enable the reader to become acquainted with the scientific content of the book.
14#
發(fā)表于 2025-3-24 00:05:39 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:23 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:37 | 只看該作者
https://doi.org/10.1007/978-3-031-06916-1k. We give an overview of the basic terms used in statistics, starting with descriptive statistics and a special focus on hypothesis testing. At the end, we provide guidelines for which statistical test should be selected, depending on the benchmarking scenario that is analyzed.
17#
發(fā)表于 2025-3-24 14:08:25 | 只看該作者
A Holistic Approach to School SuccessFirst, the most commonly used approach for a statistical comparison is presented, followed by a recently published approach, known as the Deep Statistical Comparison. Both approaches are discussed using benchmarking scenarios introduced in the statistical analysis chapter (i.e., the single-problem and multiple-problem scenarios).
18#
發(fā)表于 2025-3-24 16:52:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:31 | 只看該作者
20#
發(fā)表于 2025-3-25 00:06:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 10:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
樟树市| 景东| 亚东县| 五华县| 浠水县| 洪湖市| 牡丹江市| 定日县| 绥江县| 公安县| 大厂| 呼伦贝尔市| 和硕县| 东源县| 长汀县| 兖州市| 秦皇岛市| 北京市| 宜宾市| 肇庆市| 临西县| 富民县| 海安县| 石屏县| 庆元县| 旬阳县| 岢岚县| 九寨沟县| 潜山县| 惠州市| 平江县| 松桃| 绵竹市| 遵化市| 海阳市| 苍溪县| 永福县| 儋州市| 富平县| 襄汾县| 林西县|