找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Koro?ec Book 2022 The Editor(s) (if

[復制鏈接]
查看: 8949|回復: 39
樓主
發(fā)表于 2025-3-21 17:34:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
編輯Tome Eftimov,Peter Koro?ec
視頻videohttp://file.papertrans.cn/265/264674/264674.mp4
概述Presents a comprehensive comparison of the performance of stochastic optimization algorithms.Includes an introduction to benchmarking and statistical analysis.Provides a web-based tool for making stat
叢書名稱Natural Computing Series
圖書封面Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms;  Tome Eftimov,Peter Koro?ec Book 2022 The Editor(s) (if
描述Focusing on?comprehensive comparisons?of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches?used to analyze?algorithm performance?in a range of common?scenarios, while also addressing?issues that are often overlooked.?In turn, it?shows how these issues can be easily avoided by applying?the?principles?that have produced?Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples?from?a recently developed web-service-based e-learning tool?(DSCTool) are?presented. The tool?provides users with all the functionalities needed to make?robust statistical comparison analyses?in?various?statistical scenarios..The book is?intended?for?newcomers to the field and experienced researchers alike. For newcomers, it covers?the basics?of?optimization and statistical analysis,?familiarizing them?with the?subject matter?before introducing?the Deep Statistical Comparison approach. Experienced researchers?can quickly move on to the content on new?statistical approaches.?The book is divided?into three parts:.Part I: Int
出版日期Book 2022
關(guān)鍵詞Metaheuristics; Stochastic Optimization; Optimization; Benchmarking; Statistical Analysis; Multiobjective
版次1
doihttps://doi.org/10.1007/978-3-030-96917-2
isbn_softcover978-3-030-96919-6
isbn_ebook978-3-030-96917-2Series ISSN 1619-7127 Series E-ISSN 2627-6461
issn_series 1619-7127
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms影響因子(影響力)




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms影響因子(影響力)學科排名




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms網(wǎng)絡(luò)公開度




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms網(wǎng)絡(luò)公開度學科排名




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms被引頻次




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms被引頻次學科排名




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms年度引用




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms年度引用學科排名




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms讀者反饋




書目名稱Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:34:01 | 只看該作者
地板
發(fā)表于 2025-3-22 05:34:06 | 只看該作者
,Deep Statistical Comparison in?Single-Objective Optimization,e data is also important in practice. Finally, an extended version of the Deep Statistical Comparison ranking scheme for handling high-dimensional data is introduced as well as its application for investigating the exploration and exploitation capabilities of the compared algorithms.
5#
發(fā)表于 2025-3-22 10:27:28 | 只看該作者
6#
發(fā)表于 2025-3-22 15:06:39 | 只看該作者
7#
發(fā)表于 2025-3-22 21:03:16 | 只看該作者
https://doi.org/10.1007/978-3-031-06916-1e data is also important in practice. Finally, an extended version of the Deep Statistical Comparison ranking scheme for handling high-dimensional data is introduced as well as its application for investigating the exploration and exploitation capabilities of the compared algorithms.
8#
發(fā)表于 2025-3-23 01:14:04 | 只看該作者
9#
發(fā)表于 2025-3-23 02:34:28 | 只看該作者
10#
發(fā)表于 2025-3-23 09:13:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大兴区| 梓潼县| 九江县| 左权县| 育儿| 新安县| 东丰县| 喀什市| 南平市| 拜城县| 彰武县| 营山县| 尚志市| 大兴区| 乌恰县| 南涧| 神木县| 蕉岭县| 石林| 密山市| 五莲县| 昆明市| 尉犁县| 乡城县| 凤冈县| 田阳县| 遂溪县| 个旧市| 凭祥市| 罗山县| 渝中区| 南木林县| 基隆市| 布尔津县| 砀山县| 古田县| 安溪县| 海阳市| 尤溪县| 涟水县| 宁晋县|