找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Missing Data in Engineering Systems; Collins Achepsah Leke,Tshilidzi Marwala Book 2019 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 48860|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:19:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning and Missing Data in Engineering Systems
編輯Collins Achepsah Leke,Tshilidzi Marwala
視頻videohttp://file.papertrans.cn/265/264595/264595.mp4
概述Adopts and applies swarm intelligence algorithms to address critical questions such as model selection and model parameter estimation.Proposes new paradigms of machine learning and computational intel
叢書名稱Studies in Big Data
圖書封面Titlebook: Deep Learning and Missing Data in Engineering Systems;  Collins Achepsah Leke,Tshilidzi Marwala Book 2019 Springer Nature Switzerland AG 20
描述.Deep Learning and Missing Data in Engineering Systems. uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:.deep autoencoder neural networks;.deep denoising autoencoder networks;.the bat algorithm;.the cuckoo search algorithm; and.the firefly algorithm.. .The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. ..This
出版日期Book 2019
關(guān)鍵詞Artificial Intelligence; Missing Data Estimation; Deep Learning; Swarm Intelligence; Machine Learning; Mo
版次1
doihttps://doi.org/10.1007/978-3-030-01180-2
isbn_ebook978-3-030-01180-2Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Deep Learning and Missing Data in Engineering Systems影響因子(影響力)




書目名稱Deep Learning and Missing Data in Engineering Systems影響因子(影響力)學(xué)科排名




書目名稱Deep Learning and Missing Data in Engineering Systems網(wǎng)絡(luò)公開度




書目名稱Deep Learning and Missing Data in Engineering Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning and Missing Data in Engineering Systems被引頻次




書目名稱Deep Learning and Missing Data in Engineering Systems被引頻次學(xué)科排名




書目名稱Deep Learning and Missing Data in Engineering Systems年度引用




書目名稱Deep Learning and Missing Data in Engineering Systems年度引用學(xué)科排名




書目名稱Deep Learning and Missing Data in Engineering Systems讀者反饋




書目名稱Deep Learning and Missing Data in Engineering Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:34:49 | 只看該作者
Missing Data Estimation Using Invasive Weed Optimization Algorithm,itute narrow artificial intelligence architectures and computational intelligence methods. This is normally aligned with dimensionality and the number of rows. We propose a framework for the imputation procedure that uses a deep learning method with a swarm intelligence algorithm called deep learning-invasive weed optimization (DL-IWO) approach.
地板
發(fā)表于 2025-3-22 07:09:23 | 只看該作者
Missing Data Estimation Using Swarm Intelligence Algorithms from Reduced Dimensions,ained from the bottleneck layer of the deep autoencoder network; in this case, the number of reduced features is 30. The aim is to observe whether this approach preserves accuracy while minimizing execution time.
5#
發(fā)表于 2025-3-22 10:59:34 | 只看該作者
6#
發(fā)表于 2025-3-22 16:43:10 | 只看該作者
7#
發(fā)表于 2025-3-22 20:20:11 | 只看該作者
8#
發(fā)表于 2025-3-22 23:46:27 | 只看該作者
9#
發(fā)表于 2025-3-23 05:13:23 | 只看該作者
Missing Data Estimation Using Firefly Algorithm,izing an error function based on the interrelationship and correlation between features in the dataset. The proposed methodology in this chapter, therefore, has longer running times, however, the promising potential outcomes justify the trade-off. Also, basic knowledge of statistics is presumed.
10#
發(fā)表于 2025-3-23 07:00:59 | 只看該作者
Book 2019ing systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:.deep autoencoder neural networks;.deep denoising autoenco
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 03:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿巴嘎旗| 林西县| 二连浩特市| 融水| 阿尔山市| 景宁| 桑植县| 剑川县| 西藏| 古丈县| 社旗县| 溧阳市| 新疆| 合作市| 石狮市| 张家界市| 宁河县| 新干县| 盐亭县| 承德市| 桐庐县| 株洲市| 大埔区| 武强县| 枣庄市| 武胜县| 浑源县| 常州市| 涿鹿县| 白水县| 唐海县| 长宁区| 壶关县| 金秀| 绥江县| 城固县| 清远市| 紫金县| 南岸区| 靖安县| 襄城县|