找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Missing Data in Engineering Systems; Collins Achepsah Leke,Tshilidzi Marwala Book 2019 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: negation
11#
發(fā)表于 2025-3-23 13:31:29 | 只看該作者
2197-6503 es new paradigms of machine learning and computational intel.Deep Learning and Missing Data in Engineering Systems. uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in
12#
發(fā)表于 2025-3-23 15:02:34 | 只看該作者
Networking Humans and Non-Humansitute narrow artificial intelligence architectures and computational intelligence methods. This is normally aligned with dimensionality and the number of rows. We propose a framework for the imputation procedure that uses a deep learning method with a swarm intelligence algorithm called deep learning-invasive weed optimization (DL-IWO) approach.
13#
發(fā)表于 2025-3-23 20:02:39 | 只看該作者
Networking Individuals and Groupsained from the bottleneck layer of the deep autoencoder network; in this case, the number of reduced features is 30. The aim is to observe whether this approach preserves accuracy while minimizing execution time.
14#
發(fā)表于 2025-3-24 00:42:35 | 只看該作者
Engineering for Children Curriculumization algorithm and deep learning with cuckoo search algorithm, to name a few. Also presented in this book are experiments that show the impact of using lower dimensions and different numbers of hidden layers in the deep autoencoder networks.
15#
發(fā)表于 2025-3-24 05:31:59 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:00 | 只看該作者
https://doi.org/10.1007/978-3-030-00317-3ates for the missing data entries surpasses that of existing methods, but this is considered a worthy bargain when the accuracy of the said estimates in a high-dimensional setting is taken into consideration.
17#
發(fā)表于 2025-3-24 12:51:06 | 只看該作者
18#
發(fā)表于 2025-3-24 18:41:33 | 只看該作者
Missing Data Estimation Using Cuckoo Search Algorithm,ates for the missing data entries surpasses that of existing methods, but this is considered a worthy bargain when the accuracy of the said estimates in a high-dimensional setting is taken into consideration.
19#
發(fā)表于 2025-3-24 22:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:52:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青海省| 邮箱| 岑巩县| 武隆县| 古田县| 开封县| 宁海县| 嘉善县| 四子王旗| 玉林市| 扬中市| 大埔区| 康保县| 柏乡县| 新宾| 江孜县| 上虞市| 普安县| 阜阳市| 宁城县| 洱源县| 北京市| 和林格尔县| 饶阳县| 洛宁县| 内江市| 靖远县| 天台县| 平利县| 如东县| 太保市| 双鸭山市| 绍兴市| 姜堰市| 铁岭市| 禹城市| 万宁市| 巴楚县| 西乌珠穆沁旗| 民勤县| 湖南省|