找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復(fù)制鏈接]
樓主: 生長變吼叫
31#
發(fā)表于 2025-3-26 22:45:35 | 只看該作者
Generative Low-Dose CT Image Denoisingibility of important structural details after aggressive denoising. This paper introduces a new CT image denoising?method based on the generative adversarial network (GAN)?with Wasserstein distance and perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory,
32#
發(fā)表于 2025-3-27 04:47:08 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:08 | 只看該作者
34#
發(fā)表于 2025-3-27 10:24:20 | 只看該作者
35#
發(fā)表于 2025-3-27 15:34:23 | 只看該作者
36#
發(fā)表于 2025-3-27 20:42:23 | 只看該作者
Lecture Notes in Computer Sciencee last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-S?rensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over ., and the worst case is improved
37#
發(fā)表于 2025-3-28 01:01:40 | 只看該作者
38#
發(fā)表于 2025-3-28 05:29:27 | 只看該作者
Yu-Yi Ding,Jing-Hua Han,Qi Cao,Chao Liu?from DI2IN within multiple iterations, according to the spatial relationship of vertebrae. Finally, the locations of vertebra are refined and constrained with a learned sparse representation. We evaluate the proposed method on two categories of public databases, 3D CT volumes, and 2D X-ray scans, u
39#
發(fā)表于 2025-3-28 08:23:33 | 只看該作者
Wei Li,Xuan Zhang,Yi Shen Zhango 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modeling. We show the effectiveness of the 3D AH-Net on two example medical image analysis?applications
40#
發(fā)表于 2025-3-28 12:35:42 | 只看該作者
Evaluation of Contractor’s Tender Proposalsn. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal?pancreatic tumor data set show that both approaches sub
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 丘北县| 肥西县| 兴海县| 虹口区| 崇阳县| 方正县| 静宁县| 阳朔县| 河池市| 旬邑县| 贵港市| 竹溪县| 敖汉旗| 麻阳| 通许县| 祥云县| 苍溪县| 德昌县| 新竹县| 措美县| 庆安县| 遂昌县| 乌什县| 深泽县| 大荔县| 满洲里市| 昭觉县| 靖安县| 红原县| 利辛县| 噶尔县| 成都市| 科技| 边坝县| 大关县| 永靖县| 来凤县| 香格里拉县| 贺州市| 贡山|