找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復(fù)制鏈接]
樓主: 生長變吼叫
21#
發(fā)表于 2025-3-25 05:37:58 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:22:09 | 只看該作者
24#
發(fā)表于 2025-3-25 19:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:04 | 只看該作者
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Example last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-S?rensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over ., and the worst case is improved
26#
發(fā)表于 2025-3-26 02:29:11 | 只看該作者
Glaucoma Detection Based on Deep Learning Network in Fundus Imageided network, local disc region stream, and disc polar transformation stream. The DENet produces the glaucoma detection?result from the image directly without segmentation. Finally, we compare two deep learning?methods with other related methods on several glaucoma detection datasets.
27#
發(fā)表于 2025-3-26 08:18:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:09 | 只看該作者
Anisotropic Hybrid Network for Cross-Dimension Transferable Feature Learning in 3D Medical Imageso 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modeling. We show the effectiveness of the 3D AH-Net on two example medical image analysis?applications
29#
發(fā)表于 2025-3-26 13:37:07 | 只看該作者
Tumor Growth Prediction Using Convolutional Networksn. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal?pancreatic tumor data set show that both approaches sub
30#
發(fā)表于 2025-3-26 20:08:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长丰县| 奎屯市| 榆林市| 平武县| 三门县| 贵阳市| 千阳县| 同江市| 呼和浩特市| 萨嘎县| 林芝县| 泊头市| 峡江县| 沈阳市| 五常市| 本溪| 古丈县| 遵义县| 玉山县| 邯郸市| 八宿县| 高唐县| 财经| 行唐县| 拉萨市| 务川| 大冶市| 田林县| 扎赉特旗| 甘孜| 英山县| 三都| 乐都县| 定远县| 洪雅县| 北京市| 喜德县| 宽城| 乌兰浩特市| 金秀| 淮南市|