找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Decision and Game Theory for Security; 10th International C Tansu Alpcan,Yevgeniy Vorobeychik,Gy?rgy Dán Conference proceedings 2019 Spring

[復(fù)制鏈接]
樓主: 哄笑
31#
發(fā)表于 2025-3-26 21:50:20 | 只看該作者
https://doi.org/10.1007/978-1-4471-0471-1result of this process gives the insurer an estimated risk on the insured, which then determines the contract terms. The post-screening mechanism involves at least two contract periods whereby the second-period premium is increased if a loss event occurs during the first period..Prior work shows tha
32#
發(fā)表于 2025-3-27 04:29:44 | 只看該作者
33#
發(fā)表于 2025-3-27 06:30:43 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:25 | 只看該作者
35#
發(fā)表于 2025-3-27 14:28:25 | 只看該作者
Choosing Protection: User Investments in Security Measures for Cyber Risk Management,e different measures. Participants tended to invest preferably in the IDS, irrespective of the benefits from this investment. They were able to identify the firewall and insurance conditions in which investments were beneficial, but they did not invest optimally in these measures. The results imply
36#
發(fā)表于 2025-3-27 20:22:36 | 只看該作者
37#
發(fā)表于 2025-3-28 01:56:41 | 只看該作者
Realistic versus Rational Secret Sharing,g scenarios. In such circumstances the secret sharing scheme facilitates a power sharing agreement in the society. We also state that non-reconstruction may be beneficial for this society and give several examples.
38#
發(fā)表于 2025-3-28 05:32:59 | 只看該作者
Solving Cyber Alert Allocation Markov Games with Deep Reinforcement Learning,between sub-games. Due to the large sizes of the action and state spaces, we present a technique that uses deep neural networks in conjunction with Q-learning to derive near-optimal Nash strategies for both attacker and defender. We assess the effectiveness of these policies by comparing them to opt
39#
發(fā)表于 2025-3-28 07:05:48 | 只看該作者
Adaptive Honeypot Engagement Through Reinforcement Learning of Semi-Markov Decision Processes,ion. Meanwhile, the penetration probability is kept at a low level. The results show that the expected utility is robust against attackers of a large range of persistence and intelligence. Finally, we apply reinforcement learning to the SMDP to solve the .. Under a prudent choice of the learning rat
40#
發(fā)表于 2025-3-28 13:27:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍城县| 荆门市| 安丘市| 梁山县| 麻栗坡县| 鲁山县| 湘潭市| 长治县| 平定县| 营口市| 日土县| 五寨县| 永福县| 凌海市| 永新县| 海安县| 民权县| 临清市| 沂南县| 尖扎县| 昌都县| 平遥县| 婺源县| 九龙县| 云龙县| 巫溪县| 岑巩县| 湘乡市| 巴楚县| 榆树市| 合水县| 佛学| 苗栗市| 菏泽市| 汉寿县| 锡林郭勒盟| 岳池县| 进贤县| 清丰县| 潞城市| 五寨县|