找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Preprocessing in Data Mining; Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland

[復制鏈接]
樓主: 不友善
41#
發(fā)表于 2025-3-28 16:37:47 | 只看該作者
Book 2015ctly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to ana
42#
發(fā)表于 2025-3-28 18:58:35 | 只看該作者
Data Reduction, Mining is the “curse of dimensionality”, related with the usual high amount of attributes in data. Section?. deals with this problem. Data sampling and data simplification are introduced in Sects.?. and ., respectively, providing the basic notions on these topics for further analysis and explanation in subsequent chapters of the book.
43#
發(fā)表于 2025-3-29 00:12:14 | 只看該作者
44#
發(fā)表于 2025-3-29 07:05:10 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6accuracies are corrected. Section? . focuses in the latter task. Finally, some Data Mining applications involve some particular constraints like ranges for the data features, which may imply the normalization of the features (Sect.?.) or the transformation of the features of the data distribution (Sect.?.).
45#
發(fā)表于 2025-3-29 10:10:15 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6 problems that assume more complexity or hybridizations with respect to the classical learning paradigms. Finally, we establish the relationship between Data Preprocessing with Data Mining in Sect.?..
46#
發(fā)表于 2025-3-29 13:06:38 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6ter optimization models and derivatives methods related with feature selection, Sect.?. provides a summary on related and advanced topics, such as feature construction and feature extraction. An enumeration of some comparative experimental studies conducted in the specialized literature is included in Sect.?..
47#
發(fā)表于 2025-3-29 15:41:36 | 只看該作者
Introduction, problems that assume more complexity or hybridizations with respect to the classical learning paradigms. Finally, we establish the relationship between Data Preprocessing with Data Mining in Sect.?..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
喜德县| 廊坊市| 张家港市| 铜川市| 红桥区| 吉木萨尔县| 河东区| 积石山| 庆元县| 格尔木市| 米脂县| 涞源县| 资溪县| 沙河市| 定襄县| 东源县| 孝昌县| 分宜县| 嘉义市| 郑州市| 曲水县| 灯塔市| 龙州县| 苗栗县| 定南县| 南召县| 梨树县| 柳江县| 津南区| 钦州市| 吉首市| 贵南县| 南宁市| 榆林市| 金华市| 兴山县| 延川县| 行唐县| 建湖县| 海城市| 上林县|