找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Preprocessing in Data Mining; Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland

[復制鏈接]
查看: 51528|回復: 46
樓主
發(fā)表于 2025-3-21 19:29:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Preprocessing in Data Mining
編輯Salvador García,Julián Luengo,Francisco Herrera
視頻videohttp://file.papertrans.cn/263/262990/262990.mp4
概述Covers the set of techniques under the umbrella of data preprocessing in data mining and machine learning.A comprehensive book devoted completely to preprocessing in data mining.Written by experts in
叢書名稱Intelligent Systems Reference Library
圖書封面Titlebook: Data Preprocessing in Data Mining;  Salvador García,Julián Luengo,Francisco Herrera Book 2015 Springer International Publishing Switzerland
描述.Data Preprocessing for Data Mining. addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data..This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed
出版日期Book 2015
關鍵詞Data Mining; Data Preparation; Data Preprocessing; Data Reduction; Discretization; Feature Selection; Inst
版次1
doihttps://doi.org/10.1007/978-3-319-10247-4
isbn_softcover978-3-319-37731-5
isbn_ebook978-3-319-10247-4Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Data Preprocessing in Data Mining影響因子(影響力)




書目名稱Data Preprocessing in Data Mining影響因子(影響力)學科排名




書目名稱Data Preprocessing in Data Mining網絡公開度




書目名稱Data Preprocessing in Data Mining網絡公開度學科排名




書目名稱Data Preprocessing in Data Mining被引頻次




書目名稱Data Preprocessing in Data Mining被引頻次學科排名




書目名稱Data Preprocessing in Data Mining年度引用




書目名稱Data Preprocessing in Data Mining年度引用學科排名




書目名稱Data Preprocessing in Data Mining讀者反饋




書目名稱Data Preprocessing in Data Mining讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:41:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:19:29 | 只看該作者
https://doi.org/10.1007/978-1-4613-0429-6ion (Sect.?.) and the latest Machine Learning based approaches which use algorithms for classification or regression in order to accomplish the imputation (Sect.?.). Finally a comparative experimental study will be carried out in Sect.?..
地板
發(fā)表于 2025-3-22 07:21:23 | 只看該作者
5#
發(fā)表于 2025-3-22 08:53:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:00 | 只看該作者
7#
發(fā)表于 2025-3-22 20:38:34 | 只看該作者
8#
發(fā)表于 2025-3-22 22:01:01 | 只看該作者
Data Sets and Proper Statistical Analysis of Data Mining Techniques,to alleviate the problematic associated to the validation of any supervised method as well as the details of the performance measures that will be used in the rest of the book. Section?. takes a tour of the most common statistical techniques required in the literature to provide meaningful and corre
9#
發(fā)表于 2025-3-23 02:39:10 | 只看該作者
Dealing with Missing Values,ion (Sect.?.) and the latest Machine Learning based approaches which use algorithms for classification or regression in order to accomplish the imputation (Sect.?.). Finally a comparative experimental study will be carried out in Sect.?..
10#
發(fā)表于 2025-3-23 07:47:33 | 只看該作者
Dealing with Noisy Data,rom this point on, the two main approaches carried out in the literature are described. On the first hand, modifying and cleaning the data is studied in Sect.?., whereas designing noise robust Machine Learning algorithms is tackled in Sect.?.. An empirical comparison between the latest approaches in
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-5 21:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
万载县| 漯河市| 文登市| 安阳县| 察隅县| 杭锦旗| 天津市| 石城县| 太保市| 顺昌县| 天全县| 黑龙江省| 荥经县| 长乐市| 台安县| 搜索| 沙河市| 重庆市| 玛沁县| 灵川县| 桦川县| 内乡县| 乌拉特前旗| 固原市| 银川市| 广河县| 玉林市| 宣威市| 克拉玛依市| 社旗县| 波密县| 张家港市| 青河县| 峨眉山市| 扬州市| 曲松县| 井冈山市| 宁波市| 根河市| 如皋市| 南陵县|