找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)

[復制鏈接]
樓主: JAZZ
31#
發(fā)表于 2025-3-26 21:52:49 | 只看該作者
Strong-Constraint 4DVarThis chapter introduces the . (SC-4DVar) method. By strong constraint, we refer to the dynamical model having no model errors. Hence, the model solution over the assimilation window is entirely determined by the model as soon as we give the initial conditions.
32#
發(fā)表于 2025-3-27 02:21:52 | 只看該作者
Randomized-Maximum-Likelihood SamplingIn the following, we derive some methods for sampling the posterior conditional pdf in Eq.?(.). We aim to estimate the full pdf, not only finding its maximum. We will, in this chapter, use an approach named randomized maximum likelihood (RML) sampling.
33#
發(fā)表于 2025-3-27 07:09:58 | 只看該作者
34#
發(fā)表于 2025-3-27 11:33:54 | 只看該作者
Fully Nonlinear Data AssimilationThis chapter provides an introduction to methods that, in theory, samples precisely the posterior pdf. Commonly-used ensemble data-assimilation methods, like the EnKF and EnRML, only sample the posterior pdf correctly in the Gauss-linear case and typically fail in cases with strong nonlinearity.
35#
發(fā)表于 2025-3-27 17:06:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:08 | 只看該作者
EnKF for an Advection EquationThis chapter discusses a straightforward application of the EnKF with a linear advection equation. The example illustrates the smooth spatial update that the EnKF provides and how information propagates with the flow. Furthermore, we will see how the EnKF provides consistent error statistics.
37#
發(fā)表于 2025-3-27 22:16:20 | 只看該作者
EnKF with the Lorenz EquationsThe chaotic Lorenz’63 model is a much-used testbed used to examine the capabilities of data-assimilation methods to handle nonlinear, unstable, and chaotic dynamics. This chapter will repeat some experiments that demonstrate the strengths of ensemble methods for highly nonlinear dynamics.
38#
發(fā)表于 2025-3-28 02:05:27 | 只看該作者
Representer Method with an Ekman-Flow ModelEknes and Evensen (1997) solved the weak-constraint variational problem for a linear Ekman-flow model using the representer method. They computed the weak constraint solution for a long time series of velocity measurements. Additionally, they considered a parameter-estimation problem which rendered the problem nonlinear.
39#
發(fā)表于 2025-3-28 06:49:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:20:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阳江市| 芜湖县| 广南县| 大宁县| 钟祥市| 建水县| 仁化县| 南江县| 五台县| 吴堡县| 华容县| 都安| 三都| 大悟县| 克什克腾旗| 河南省| 彰化县| 江西省| 临西县| 卢湾区| 靖西县| 乌拉特后旗| 卢氏县| 山丹县| 甘南县| 黄梅县| 舞钢市| 繁昌县| 宁武县| 行唐县| 舞钢市| 灯塔市| 郁南县| 泾源县| 朝阳区| 海城市| 宝山区| 周宁县| 奇台县| 皮山县| 邵东县|