找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)

[復(fù)制鏈接]
查看: 17315|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:16:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Assimilation Fundamentals
副標(biāo)題A Unified Formulatio
編輯Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu
視頻videohttp://file.papertrans.cn/263/262726/262726.mp4
概述Derives data-assimilation methods using a top-down approach.Presents unified data-assimilation formulation.Derivation applicable to both state- and parameter estimation.Provides a deep understanding o
叢書(shū)名稱Springer Textbooks in Earth Sciences, Geography and Environment
圖書(shū)封面Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)
描述.This open-access textbook‘s significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes‘ theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today‘s popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve.?The book‘s?top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method fo
出版日期Textbook‘‘‘‘‘‘‘‘ 2022
關(guān)鍵詞Open Access; Data Assimilation; Parameter Estimation; Ensemble Kalman Filter; 4DVar; Representer Method; E
版次1
doihttps://doi.org/10.1007/978-3-030-96709-3
isbn_softcover978-3-030-96711-6
isbn_ebook978-3-030-96709-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
issn_series 2510-1307
copyrightThe Editor(s) (if applicable) and The Author(s) 2022
The information of publication is updating

書(shū)目名稱Data Assimilation Fundamentals影響因子(影響力)




書(shū)目名稱Data Assimilation Fundamentals影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Assimilation Fundamentals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Assimilation Fundamentals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Assimilation Fundamentals被引頻次




書(shū)目名稱Data Assimilation Fundamentals被引頻次學(xué)科排名




書(shū)目名稱Data Assimilation Fundamentals年度引用




書(shū)目名稱Data Assimilation Fundamentals年度引用學(xué)科排名




書(shū)目名稱Data Assimilation Fundamentals讀者反饋




書(shū)目名稱Data Assimilation Fundamentals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:46:39 | 只看該作者
Springer Textbooks in Earth Sciences, Geography and Environmenthttp://image.papertrans.cn/d/image/262726.jpg
板凳
發(fā)表于 2025-3-22 03:51:53 | 只看該作者
Embryogenetics of Cleft Lip and Palateroximation simplifies the Bayesian posterior, which allows us to compute the maximum a posteriori (MAP) estimate and sample from the posterior pdf. This chapter will introduce the Gaussian approximation and then discuss the Gauss–Newton method for finding the MAP estimate. This method is the startin
地板
發(fā)表于 2025-3-22 08:31:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:51:11 | 只看該作者
Complete Bilateral Cleft Lip and Palateor a closed-form solution that minimizes the cost function, and then we continue discussing how specific cases lead to several well-known methods. The first case assumes that the measurements are all located at the initial time of the assimilation window. Thus, there is no need for any model integra
6#
發(fā)表于 2025-3-22 16:32:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:58:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:06 | 只看該作者
Die Kunden, die unbekannten Wesen!apply both 3DVar and SC-4DVar sequentially over multiple data-assimilation windows, and we will demonstrate the difference between the filter solution obtained by 3DVar and the recursive SC-4DVar smoother solution. We will also dive deeper into the behavior of the SC-4DVar with highly nonlinear- and
10#
發(fā)表于 2025-3-23 06:34:47 | 只看該作者
Data Assimilation Fundamentals978-3-030-96709-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 临猗县| 宜君县| 宜良县| 天门市| 黑龙江省| 瑞昌市| 纳雍县| 绥阳县| 锡林浩特市| 林口县| 手游| 上高县| 寿阳县| 安岳县| 扬中市| 同江市| 鞍山市| 通山县| 邵阳市| 玛多县| 呼和浩特市| 太湖县| 迁安市| 泰兴市| 娄烦县| 开鲁县| 武义县| 普陀区| 齐齐哈尔市| 兴化市| 托克托县| 洞口县| 陈巴尔虎旗| 广水市| 苏州市| 潜江市| 上杭县| 津市市| 张家界市| 潮州市|