找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Das emotionale Unternehmen; Mental starke Organi Jochen Peter Breuer,Pierre Frot Book 2012Latest edition Gabler Verlag | Springer Fachmedie

[復(fù)制鏈接]
樓主: PED
21#
發(fā)表于 2025-3-25 03:59:51 | 只看該作者
Yao-Hua Tannd a synopsis of the chapter.All chapters will look at the r.This book highlights minimum standards relating to the management of different conditions in the practice of Obstetrics and Gynaecology. The editors explore clinical governance issues, common causes of as well as ways to avoid litigation.?
22#
發(fā)表于 2025-3-25 10:03:03 | 只看該作者
23#
發(fā)表于 2025-3-25 15:03:10 | 只看該作者
24#
發(fā)表于 2025-3-25 16:55:54 | 只看該作者
Boundary U-Net: A Segmentation Method to Improve Salt Bodies Identification Accuracy,osits positions which are important evidences to locate oil and gas resources area underground. Although the development of geophysical?technology makes it easier to collect more seismic images, difficult wave shapes and structures in images still hinder the use and analysis of these valuable data.
25#
發(fā)表于 2025-3-25 20:04:18 | 只看該作者
Eine trilemmatische Perspektive auf die Inklusion von Philosophinnen* in den (Schul-)Kanonembewusstsein für den daraus resultierenden m?nnlichen überhang. Meine These ist, dass diese Diskurse das Problem der Inklusion von Philosophinnen* auf ein Dilemma verkürzen. Ich erkunde die Inklusion von Philosophinnen* stattdessen mit Mai-Ahn Bogers Trilemma der Inklusion. Darauf aufbauend diskuti
26#
發(fā)表于 2025-3-26 01:47:06 | 只看該作者
Various Representations of the Generalized Kostka Polynomials,-dimensional irreducible representation .(λ) of gIn with highest weight λ in the tensor product ..) ? … ? . (R.). We review several representations of the generalized Kostka polynomials, such as the charge, path space, quasi-particle and bosonic representation. In addition we describe a bijection be
27#
發(fā)表于 2025-3-26 05:48:50 | 只看該作者
Book 2011tion, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics..?.The presentation i
28#
發(fā)表于 2025-3-26 10:42:07 | 只看該作者
Churchman’s Contributions to the Advancement of Management Scienceideas are still relevant today. For a summary of CWC’s epistemological views refer to van Gigch (2003) who presents these ideas in the context of a rehabilitation of epistemology as an indispensable tool to trace the sources of knowledge. Paper presented at the 12th Trienal Conference on Operations Research in Athens, 1990, IFORS’90
29#
發(fā)表于 2025-3-26 14:50:22 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
公主岭市| 绩溪县| 黑山县| 庆元县| 金阳县| 中山市| 营口市| 嘉祥县| 梁河县| 仪陇县| 剑川县| 孝义市| 凤冈县| 固阳县| 阿合奇县| 安陆市| 天长市| 滦平县| 金寨县| 玛纳斯县| 三亚市| 榆社县| 高雄县| 南木林县| 南川市| 诏安县| 鹤庆县| 固阳县| 罗田县| 阿拉善盟| 大姚县| 太湖县| 自治县| 丰城市| 屏边| 大安市| 龙里县| 什邡市| 景谷| 武川县| 宿迁市|