找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
41#
發(fā)表于 2025-3-28 14:46:19 | 只看該作者
Let . be a closed, separable subspace of a Hilbert space ..We can define a new norm |.|. satisfying |.|.?≤∥.∥, ?.?∈?. and such that the topology induced by this norm is equivalent to the weak topology of . on bounded subsets of .. This can be done as follows: Let {..} be an orthonormal basis for .. Define
42#
發(fā)表于 2025-3-28 22:42:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:25:58 | 只看該作者
We now consider some applications of the materials presented in Chaps. .–.. We wish to show how powerful these methods are in obtaining results better than those given by other methods. In Chaps. 7–. we deal with some problems involving Schr?dinger equations.
44#
發(fā)表于 2025-3-29 05:41:45 | 只看該作者
Wortgeschichten aus alten Gemeinden,We consider the system . where . is a map from .?=?[0, .] to . such that each component ..(.) is a periodic function in .. with period ., and the function .?(., .)?=?.?(., .., ? , ..) is continuous from . to . with . For each . the function .?(., .) is periodic in . with period ..
45#
發(fā)表于 2025-3-29 07:24:52 | 只看該作者
Wortgeschichten aus alten Gemeinden,Consider the problem . where . is a bounded domain whose boundary is a smooth manifold, and .(., .) is a continuous function on . The following theorem will be a corollary of the results of this chapter.
46#
發(fā)表于 2025-3-29 14:13:08 | 只看該作者
https://doi.org/10.1007/978-3-663-02981-6In this chapter we show how monotonicity methods combined with infinite dimensional sandwich pairs can be used to solve very general systems of equations whether or not they are semibounded.
47#
發(fā)表于 2025-3-29 18:04:09 | 只看該作者
48#
發(fā)表于 2025-3-29 22:08:53 | 只看該作者
https://doi.org/10.1007/978-3-663-02981-6In this chapter we study periodic solutions of the Dirichlet problem for the semilinear wave equation:
49#
發(fā)表于 2025-3-30 02:29:48 | 只看該作者
50#
發(fā)表于 2025-3-30 04:22:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 宁陕县| 辽阳县| 汾阳市| 靖江市| 京山县| 庐江县| 莫力| 吴川市| 孙吴县| 新民市| 高州市| 盐池县| 德化县| 库伦旗| 马公市| 瑞金市| 吴忠市| 辽中县| 明溪县| 惠东县| 嘉义市| 永济市| 丰城市| 平武县| 盈江县| 柏乡县| 施甸县| 内黄县| 运城市| 准格尔旗| 松阳县| 北流市| 湘乡市| 宣汉县| 紫金县| 肃南| 正安县| 边坝县| 海晏县| 金阳县|