找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
21#
發(fā)表于 2025-3-25 05:46:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:49 | 只看該作者
Global Solutions,.?(.). to have a nonempty resolvent. To achieve this, we assumed that .?(.) was periodic in .. This forced us to assume the same for .(., .), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential
23#
發(fā)表于 2025-3-25 14:23:27 | 只看該作者
24#
發(fā)表于 2025-3-25 15:53:11 | 只看該作者
Nonlinear Optics,on coefficient and the functions are periodic with respect to the variables . Here, . where .?(.) is a continuous, nonnegative function periodic in . Steady state solutions satisfy the following equation over a periodic domain . . where ., . are parameters. The solutions . are to be periodic in Ω wi
25#
發(fā)表于 2025-3-25 21:13:22 | 只看該作者
https://doi.org/10.1007/978-3-030-45603-0Critical point theory; Critical point calculus; Critical point theory applications; Variational methods
26#
發(fā)表于 2025-3-26 02:32:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:26 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:20 | 只看該作者
a .. functional(usually representing the energy) arising from the given data. As an illustration, the equation . is the Euler equation of the functional . on an appropriate space, where . and the norm is that of ... The solving of the Euler equations is tantamount to finding critical points of the
30#
發(fā)表于 2025-3-26 20:02:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长葛市| 阿图什市| 浦东新区| 东兰县| 洛扎县| 乌审旗| 罗甸县| 绩溪县| 广州市| 图木舒克市| 洛浦县| 辽宁省| 兖州市| 临颍县| 香港 | 烟台市| 德州市| 海兴县| 左贡县| 杭锦旗| 安仁县| 涿州市| 德安县| 修文县| 乐平市| 吉隆县| 荆门市| 德江县| 郸城县| 巍山| 随州市| 岚皋县| 乌兰浩特市| 兴文县| 贵港市| 岑巩县| 凤庆县| 清远市| 杭州市| 辉南县| 庆元县|