找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convolution Equations and Singular Integral Operators; Selected Papers Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky Book 2010 Birkh?user

[復(fù)制鏈接]
樓主: Goiter
21#
發(fā)表于 2025-3-25 06:47:32 | 只看該作者
Matrix Integral Operators on a Finite Interval with Kernels Depending on the Difference of the ArguBy ..(0, τ) (1≤ . ≤ ∞, 0 < τ < ∞) denote the Banach space of the vector functions . = {.., .., ..., ..} with entries .. ∈ ..(0, τ) and the norm
22#
發(fā)表于 2025-3-25 11:24:33 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:46:19 | 只看該作者
The Spectrum of Singular Integral Operators in ,, Spaces,First, we shall consider the simplest class of one-dimensional singular integral operators — the class of discrete Wiener-Hopf operators.
25#
發(fā)表于 2025-3-25 19:58:07 | 只看該作者
On an Algebra Generated by the Toeplitz Matrices in the Spaces ,,,Let .. (1<.<∞) be the Banach Hardy space of all functions ?(ζ) that are analytic inside the circle |ζ|=1 with the norm
26#
發(fā)表于 2025-3-26 01:21:44 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:03 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:49:41 | 只看該作者
One-dimensional Singular Integral Operators with Shift,Let Г be a closed or open oriented Lyapunov arc and ω(.) be a bijective mapping of Г onto itself. An operator of the form . is usually called a . ω(.). Here .(.), .(.), .(.), and .(.) are bounded measurable functions on Г, . is the operator of singular integration along Г given by . and . is the shift operator defined by
30#
發(fā)表于 2025-3-26 19:46:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 渝中区| 峨眉山市| 明水县| 宁武县| 深州市| 佛坪县| 乌鲁木齐县| 大埔区| 昌吉市| 楚雄市| 沽源县| 凤城市| 岳阳市| 普宁市| 邹平县| 平塘县| 东至县| 东阳市| 壶关县| 江西省| 仲巴县| 唐山市| 海盐县| 长子县| 乌什县| 虞城县| 西充县| 徐汇区| 鄂托克前旗| 新竹市| 铜川市| 河北区| 孟连| 镶黄旗| 肃宁县| 张家界市| 夏邑县| 朝阳区| 新化县| 龙门县|