找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convolution Equations and Singular Integral Operators; Selected Papers Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky Book 2010 Birkh?user

[復(fù)制鏈接]
查看: 44942|回復(fù): 57
樓主
發(fā)表于 2025-3-21 20:02:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators
副標(biāo)題Selected Papers
編輯Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky
視頻videohttp://file.papertrans.cn/238/237876/237876.mp4
概述The papers selected for this volume have never been translated into English.Closes a gap in the English literature on the subject.The material can be used for advanced courses and seminars in mathemat
叢書(shū)名稱(chēng)Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Convolution Equations and Singular Integral Operators; Selected Papers Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky Book 2010 Birkh?user
描述This book consists of translations into English of several pioneering papers in the areas of discrete and continuous convolution operators and on the theory of singular integral operators published originally in Russian. The papers were wr- ten more than thirty years ago, but time showed their importance and growing in?uence in pure and applied mathematics and engineering. The book is divided into two parts. The ?rst ?ve papers, written by I. Gohberg and G. Heinig, form the ?rst part. They are related to the inversion of ?nite block Toeplitz matrices and their continuous analogs (direct and inverse problems) and the theory of discrete and continuous resultants. The second part consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the theory of one dimensional singular integral operators with discontinuous co- cients on various spaces. Special attention is paid to localization theory, structure of the symbol, and equations with shifts. ThisbookgivesanEnglishspeakingreaderauniqueopportunitytogetfam- iarized with groundbreaking work on the theory of Toepliz matrices and singular integral operators which by now have become classical. In the process of the preparati
出版日期Book 2010
關(guān)鍵詞Factor; Finite; Integral equation; Singular integral; Volume; algorithms; applied mathematics; commutative
版次1
doihttps://doi.org/10.1007/978-3-7643-8956-7
isbn_ebook978-3-7643-8956-7Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightBirkh?user Basel 2010
The information of publication is updating

書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators影響因子(影響力)




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators被引頻次




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators被引頻次學(xué)科排名




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators年度引用




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators年度引用學(xué)科排名




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators讀者反饋




書(shū)目名稱(chēng)Convolution Equations and Singular Integral Operators讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:28 | 只看該作者
A framework for describing workinating points of the corresponding open arcs of the contour Γ, and the numbers .. satisfy the conditions –1 < .. < .–1. In what follows we will denote the space ..(Γ, .) by .., where the vector . is defined by . = (.., ..., ..).
板凳
發(fā)表于 2025-3-22 03:59:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:01 | 只看該作者
5#
發(fā)表于 2025-3-22 11:45:33 | 只看該作者
https://doi.org/10.1007/978-3-7643-8956-7Factor; Finite; Integral equation; Singular integral; Volume; algorithms; applied mathematics; commutative
6#
發(fā)表于 2025-3-22 15:25:56 | 只看該作者
Birkh?user Basel 2010
7#
發(fā)表于 2025-3-22 19:12:13 | 只看該作者
Introduction, lists more than 25 monographs, as well as more than 500 papers. Among these there are several papers published in Russian which have never been translated into English. The present volume partially removes this omission and contains English translations of 13 of these papers.
8#
發(fā)表于 2025-3-23 00:10:17 | 只看該作者
Inversion of Finite ToeplitzMatrices Consisting of Elements of a Noncommutative Algebra,ed to the case where .. (. = 0,±1,...,±.) are elements of some noncommutative algebra with unit. The paper consists of six sections. The results of [.] are generalized in the first three sections, the results of [.] are extended in the last three sections. Continual analogues of results of this paper will be presented elsewhere.
9#
發(fā)表于 2025-3-23 02:48:08 | 只看該作者
https://doi.org/10.1007/1-4020-4583-2In this communication Toeplitz matrices of the form ∥..∥., where .. (.=0,±1,...,±. are elements of some noncommutative algebra, and their continual analogues are considered. The theorems presented here are generalizations of theorems from [.] to the noncommutative case.
10#
發(fā)表于 2025-3-23 07:04:59 | 只看該作者
Wittgenstein, Language and Information,By ..(0, τ) (1≤ . ≤ ∞, 0 < τ < ∞) denote the Banach space of the vector functions . = {.., .., ..., ..} with entries .. ∈ ..(0, τ) and the norm
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒙城县| 桂阳县| 克东县| 新宾| 海城市| 寻乌县| 兴和县| 安塞县| 礼泉县| 宜城市| 鲜城| 河池市| 本溪| 教育| 沙河市| 葫芦岛市| 正镶白旗| 台江县| 武清区| 山东省| 梓潼县| 乌恰县| 翁牛特旗| 文登市| 来凤县| 芒康县| 深水埗区| 苍梧县| 渝中区| 剑川县| 台北县| 新竹县| 株洲市| 嘉禾县| 凌源市| 吴桥县| 昌江| 河东区| 时尚| 澄迈县| 九江县|