找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Linear Systems with Regulation and Input Constraints; A. Saberi,A. Stoorvogel,P. Sannuti Book 2000 Springer-Verlag London Limit

[復(fù)制鏈接]
樓主: 惡化
31#
發(fā)表于 2025-3-26 22:26:45 | 只看該作者
Control of Linear Systems with Regulation and Input Constraints
32#
發(fā)表于 2025-3-27 04:33:50 | 只看該作者
33#
發(fā)表于 2025-3-27 05:56:34 | 只看該作者
, optimal control with an output regulation constraint — discrete-time systems,r, that there is no loss at all in the achievable performance because of the added output regulation constraint whenever proper (or strictly proper) controllers are used. However, although the achievable performance is not compromised because of the added output regulation constraint, as well known
34#
發(fā)表于 2025-3-27 13:00:27 | 只看該作者
What does one do if output regulation is not possible?,e seen to be a power signal. In this case, since . does not asymptotically go to zero, one could minimize in the asymptotic sense the power of the signal .. In other words, in the classical output regulation we seek to render . asymptotically zero, where as whenever it is not possible to do so we co
35#
發(fā)表于 2025-3-27 16:45:54 | 只看該作者
36#
發(fā)表于 2025-3-27 20:07:33 | 只看該作者
37#
發(fā)表于 2025-3-27 22:56:56 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:19 | 只看該作者
39#
發(fā)表于 2025-3-28 08:19:53 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:30 | 只看該作者
https://doi.org/10.1007/978-3-662-01977-1ed. Namely, whether the added output regulation constraint in a problem compromises the achievable performance. In this regard, as in Chapter 10, there is a certain loss or decay in the achievable performance due to the added output regulation constraint, and this decay will be explicitly expressed in terms of a static optimization problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赫章县| 治县。| 图们市| 杭锦旗| 察隅县| 元谋县| 阿合奇县| 新兴县| 壤塘县| 霍城县| 紫云| 北辰区| 隆子县| 全州县| 桃源县| 晋江市| 通河县| 曲周县| 兰西县| 通山县| 利津县| 泽州县| 师宗县| 临湘市| 香河县| 辉县市| 晋宁县| 开鲁县| 莱州市| 明溪县| 双牌县| 治多县| 手游| 海城市| 获嘉县| 清丰县| 陈巴尔虎旗| 壶关县| 道真| 枝江市| 江永县|