找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to a General Asymptotic Statistical Theory; J. Pfanzagl Book 1982 Springer-Verlag, New York Inc. 1982 Asymptotische Wirksamk

[復(fù)制鏈接]
樓主: 多話
41#
發(fā)表于 2025-3-28 17:18:18 | 只看該作者
42#
發(fā)表于 2025-3-28 21:18:15 | 只看該作者
43#
發(fā)表于 2025-3-28 23:59:50 | 只看該作者
978-0-387-90776-5Springer-Verlag, New York Inc. 1982
44#
發(fā)表于 2025-3-29 05:10:58 | 只看該作者
45#
發(fā)表于 2025-3-29 10:56:04 | 只看該作者
Verletzungen der intrakraniellen Schlagadern., ·), n∈IN, for p-measures in β which is strict in the sense that P.(., ·) ∈ β for . ∈ X.. If it is known that the true p-measure P belongs to some subfamily ., is it then possible to obtain estimators for P which attain their values in . from the estimators P.? Given P. (., ·) ∈ β, it suggests its
46#
發(fā)表于 2025-3-29 14:47:22 | 只看該作者
Optimal Routing in Rectilinear Channelssurable map κ. : X. → IR.. The goal of this chapter is to obtain standards for the evaluation of particular estimators by providing bounds for the concentration of estimators (with certain properties). This program can be carried through with success if the sample size is large.
47#
發(fā)表于 2025-3-29 17:50:25 | 只看該作者
V. A. Tverdislov,E. N. Gerasimovadif f erentiable and κ(·,P) ∈T(P,β) its canonical gradient. If an estimator-sequence κ. , n∈IN, for κ is as. median unbiased, then, for n → ∞ , P.*n.(κ — κ (P)) cannot be more concentrated about 0 than N(O,P(κ (·,P).)). Hence it is justified to call an estimator- sequence which is as. median unbiase
48#
發(fā)表于 2025-3-29 20:33:44 | 只看該作者
Vessel Wall in Athero- and Thrombogenesis.5.3, it is impossible that a test-sequence attains this as. envelope power function for alternatives Q deviating from the hypothesis in different directions. Hence the only situation in which no further problems arise is that of a hypothesis with one-dimensional co-space (see Section 8.2 for a more
49#
發(fā)表于 2025-3-30 03:54:13 | 只看該作者
50#
發(fā)表于 2025-3-30 07:49:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门峡市| 上思县| 治多县| 彭山县| 大安市| 南澳县| 平阳县| 海口市| 公主岭市| 宿迁市| 乌审旗| 马边| 江口县| 神农架林区| 惠东县| 英超| 竹山县| 红桥区| 平原县| 祥云县| 庆元县| 营口市| 靖宇县| 岗巴县| 都昌县| 青海省| 本溪市| 宜宾县| 达日县| 枞阳县| 望都县| 卢氏县| 甘孜县| 灌阳县| 镇雄县| 西青区| 互助| 鄂托克旗| 桂林市| 柳州市| 开鲁县|