找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to a General Asymptotic Statistical Theory; J. Pfanzagl Book 1982 Springer-Verlag, New York Inc. 1982 Asymptotische Wirksamk

[復制鏈接]
樓主: 多話
11#
發(fā)表于 2025-3-23 10:58:16 | 只看該作者
Verletzungen der Schlagadern am Hirngrund,Let (x .) be a measurable space, and β the basic family of p-measures Q | A. Let β. ? β be a subfamily, interpreted as a . which is to be tested against alternatives from β — β. .
12#
發(fā)表于 2025-3-23 14:18:00 | 只看該作者
13#
發(fā)表于 2025-3-23 21:05:50 | 只看該作者
V. A. Tverdislov,E. N. GerasimovaLet β be a family of p-measures, and κ: β → IR a differentiable functional. Let κ(·,β the canonical gradient of κ at P.
14#
發(fā)表于 2025-3-24 01:58:49 | 只看該作者
Funktionen zur Modellierung von Systemen,Let β. be the family of all distributions on B which admit a posi- tive and symmetric Lebesgue density, and β ? β. a full family of distributions with positive Lebesgue density. Let p denote the Lebesgue density of P, ?(x,P):= log p(x), and ?’(x,P):= (d/dx)?(x,P).
15#
發(fā)表于 2025-3-24 04:38:48 | 只看該作者
Vasodilators in Chronic Heart FailureFor i ∈ {1,. . .,m} let (x., .) be measurable spaces. In the following, sums Σ and products ×,Π over i always run from 1 to m. Let β be a family of p-measures on ×., and κ: β → IR a functional. Our problem is to estimate κ(P) under various conditions on β.
16#
發(fā)表于 2025-3-24 10:32:33 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:37:05 | 只看該作者
Introduction,This book intends to provide a basis for a unified asymptotic statistical theory, comprising parametric as well as non-parametric models.
19#
發(fā)表于 2025-3-24 22:12:15 | 只看該作者
The Local Structure of Families of Probability Measures,In this section we develop the concept of a tangent cone which seems appropriate for describing the . of a family of p-measures. Our purpose is to seize upon those local properties which are essential for the asymptotic performance of statistical procedures .
20#
發(fā)表于 2025-3-25 00:32:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
海丰县| 讷河市| 江山市| 沐川县| 合川市| 桃园市| 聊城市| 抚顺县| 黄大仙区| 运城市| 沙湾县| 余庆县| 仁怀市| 建昌县| 韶山市| 鲜城| 舒城县| 东乌珠穆沁旗| 垫江县| 务川| 法库县| 芜湖县| 自治县| 浑源县| 南陵县| 余江县| 夹江县| 呼图壁县| 巴林左旗| 建始县| 通江县| 和平区| 平遥县| 托克逊县| 旬阳县| 盐城市| 龙南县| 漯河市| 安溪县| 仪征市| 集贤县|