找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact Mechanics; Proceedings of the 3 Jo?o A. C. Martins,Manuel D. P. Monteiro Marques Conference proceedings 2002 Springer Science+Busin

[復(fù)制鏈接]
樓主: 對將來事件
11#
發(fā)表于 2025-3-23 11:02:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:37 | 只看該作者
13#
發(fā)表于 2025-3-23 18:35:46 | 只看該作者
Solving Rocking Block Problems with Multiple ImpactsIn this paper, we present a solution to the multiple impact problem that may arise in the rocking blocks. We use an approach based on the impulse-momentum methods, the energetic coefficient of restitution, and the impulse transmission ratio.
14#
發(fā)表于 2025-3-24 00:26:35 | 只看該作者
Analysis of Eigenvalue Problems Modelling Friction: Sufficient Conditions of Non-Uniqueness for the This study is concerned with the Coulomb frictional contact problem in elastostatics. Introducing a convenient eigenvalue problem, it becomes possible to establish sufficient conditions of non-uniqueness for the continuous model. It can be also proven that these sufficient conditions are fulfilled under appropriate hypotheses.
15#
發(fā)表于 2025-3-24 02:25:06 | 只看該作者
16#
發(fā)表于 2025-3-24 06:32:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:47 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:05 | 只看該作者
19#
發(fā)表于 2025-3-24 21:50:40 | 只看該作者
On Integrating Stiff Multibody Dynamics with Contact and Frictionear implicit technique. The method is consistent whenever the stiff forces originate in springs and dampers. When the stiffness parameters increase towards infinity the subproblem to be solved in one step approaches the one where the stiff elements are replaced by joints, under the assumption that the friction cone of the limit system is pointed.
20#
發(fā)表于 2025-3-24 23:34:12 | 只看該作者
Analysis of Systems with Multiple Frictional Contactsf non-uniqueness and non-existence, a new kind of singularity is detected: coexistence of several stable solutions. Besides, it is shown that in a regular case where a unique solution exists, this solution might be unstable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双峰县| 延寿县| 岳阳市| 醴陵市| 东乌| 噶尔县| 卓尼县| 合川市| 永宁县| 扎赉特旗| 望都县| 杂多县| 县级市| 柏乡县| 江孜县| 巴林左旗| 昌黎县| 台前县| 双流县| 中山市| 金平| 阜南县| 黄石市| 渝中区| 喜德县| 岢岚县| 莒南县| 泸溪县| 日照市| 凌云县| 石泉县| 朝阳区| 文安县| 本溪市| 鹤山市| 上饶市| 黎川县| 蛟河市| 海林市| 丰镇市| 台北县|