找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Methods for the Practical Treatment of Integral Equations; Proceedings of the C G. H?mmerlin,K.-H. Hoffmann Conference proceed

[復(fù)制鏈接]
樓主: 紀(jì)念性
31#
發(fā)表于 2025-3-26 21:06:59 | 只看該作者
32#
發(fā)表于 2025-3-27 02:10:12 | 只看該作者
33#
發(fā)表于 2025-3-27 06:01:14 | 只看該作者
34#
發(fā)表于 2025-3-27 11:58:55 | 只看該作者
Optimal Discrepancy Principles for the Tikh0n0v Regularization of Integral Equations of the First Kon” of(1.1) Tx = y,i.e., the unique element that has minimal norm among all minimizers of the residual |Tx-y|. The best-approximate solution is actually given by T?y where T is the Moore-Penrose generalized inverse of T (see e.g. [15], [7]).
35#
發(fā)表于 2025-3-27 15:02:33 | 只看該作者
36#
發(fā)表于 2025-3-27 18:35:23 | 只看該作者
On the Condition Number of Boundary Integral Equations in Acoustic Scattering using Combined Doubleme-harmonic acoustic scattering, can be resolved by seeking the solutions in the form of a combined double- and single-layer potential. We present an outline of an analysis of the appropriate choice of the coupling parameter in order to minimize the condition number of the integral equations.
37#
發(fā)表于 2025-3-28 01:26:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:46:04 | 只看該作者
Solving Integral Equations on Surfaces in Space, operator is compact from C(S) into itself. We will consider a collocation method for numerically solving (1.1), with the approximating solution a function that is piecewise quadratic in a parameterization of the surface. The numerical method is of independent interest, but we have chosen the method
40#
發(fā)表于 2025-3-28 13:47:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌南县| 渭源县| 临武县| 苏州市| 谷城县| 丰台区| 巫山县| 岳西县| 辉南县| 永昌县| 攀枝花市| 彭州市| 林周县| 通化市| 顺义区| 甘德县| 桐城市| 通山县| 彰化市| 平凉市| 瑞安市| 靖远县| 师宗县| 大庆市| 扶余县| 冕宁县| 灵武市| 筠连县| 页游| 宁安市| 綦江县| 墨玉县| 江山市| 共和县| 榆中县| 金昌市| 萨迦县| SHOW| 卓尼县| 曲水县| 钦州市|