找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems; Frédéric Hélein Book 2001 Springer Basel AG 2001 Finite.Loop group

[復(fù)制鏈接]
樓主: 熱情美女
11#
發(fā)表于 2025-3-23 10:07:56 | 只看該作者
Overview: 978-3-7643-6576-9978-3-0348-8330-6
12#
發(fā)表于 2025-3-23 14:35:13 | 只看該作者
Three Lectures on QCD Phase Transitionse this property of . is invariant by conformal changes of variables, one might be interested in the behaviour of . by such a transformation. So let’s choose a conformal mapwhere Ω. is the domain of a map .:and let’s check how the corresponding function . transforms. We writefor the coordinates of Ω. and Ω., respectively. Set Compute
13#
發(fā)表于 2025-3-23 20:24:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:43 | 只看該作者
15#
發(fā)表于 2025-3-24 05:18:45 | 只看該作者
Heavy Flavors and Exotic HadronsWood in 1982 [34], F. Burstall and J. H. Rawnsley in 1986 [23], and K. Uhlenbeck in 1989 [82]. We are going to consider harmonic maps .: . → . ? ?., i. e. maps satisfyingwhich is equivalent to Δ. ∥ .. In contrast to Chapter 4, where we considered the Hopf differentialwe will also use derivatives of
16#
發(fā)表于 2025-3-24 06:51:58 | 只看該作者
https://doi.org/10.1007/978-3-030-95534-2ow that for CMC tori, all such harmonic maps are of finite type, a result of U. Pinkall and I. Sterling. This result can be generalized to harmonic maps from torus into Lie groups [21] or more generally into symmetric spaces [21], [22].
17#
發(fā)表于 2025-3-24 11:12:25 | 只看該作者
https://doi.org/10.1007/978-3-030-95534-2resch simplified this construction. He remarked that Wente tori should possess planar curvature lines and thus studied all CMC surfaces with planar curvature lines. It leads to an overdetermined system of equations which can be solved by quadratures using elliptic integrals. And U. Abresch showed th
18#
發(fā)表于 2025-3-24 18:23:16 | 只看該作者
19#
發(fā)表于 2025-3-24 22:46:19 | 只看該作者
Constant mean curvature tori are of finite type,ow that for CMC tori, all such harmonic maps are of finite type, a result of U. Pinkall and I. Sterling. This result can be generalized to harmonic maps from torus into Lie groups [21] or more generally into symmetric spaces [21], [22].
20#
發(fā)表于 2025-3-25 00:32:18 | 只看該作者
https://doi.org/10.1007/978-3-0348-8330-6Finite; Loop group; Meromorphic function; Microsoft Access; algebra; constant; curvature; differential geom
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 伊吾县| 嘉义县| 内江市| 农安县| 健康| 长春市| 巨鹿县| 邢台市| 三门峡市| 自治县| 沙洋县| 阿拉善左旗| 雅安市| 无棣县| 灵璧县| 和龙市| 大石桥市| 灵寿县| 太湖县| 临夏市| 临清市| 寻甸| 商城县| 乌恰县| 连城县| 夏河县| 蕲春县| 秦安县| 运城市| 德安县| 淅川县| 迭部县| 北宁市| 澄迈县| 易门县| 庆城县| 潞城市| 资溪县| 汝州市| 汝城县|