找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems; Frédéric Hélein Book 2001 Springer Basel AG 2001 Finite.Loop group

[復(fù)制鏈接]
查看: 25930|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:24:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems
編輯Frédéric Hélein
視頻videohttp://file.papertrans.cn/236/235841/235841.mp4
叢書(shū)名稱(chēng)Lectures in Mathematics. ETH Zürich
圖書(shū)封面Titlebook: Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems;  Frédéric Hélein Book 2001 Springer Basel AG 2001 Finite.Loop group
出版日期Book 2001
關(guān)鍵詞Finite; Loop group; Meromorphic function; Microsoft Access; algebra; constant; curvature; differential geom
版次1
doihttps://doi.org/10.1007/978-3-0348-8330-6
isbn_softcover978-3-7643-6576-9
isbn_ebook978-3-0348-8330-6
copyrightSpringer Basel AG 2001
The information of publication is updating

書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems影響因子(影響力)




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems被引頻次




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems年度引用




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems讀者反饋




書(shū)目名稱(chēng)Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:37 | 只看該作者
Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems978-3-0348-8330-6
板凳
發(fā)表于 2025-3-22 00:29:28 | 只看該作者
Heavy Flavors and Exotic Hadrons. e. maps satisfyingwhich is equivalent to Δ. ∥ .. In contrast to Chapter 4, where we considered the Hopf differentialwe will also use derivatives of . of higher order. Let us first introduce some notations. We write
地板
發(fā)表于 2025-3-22 06:00:06 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:04 | 只看該作者
Elementary twistor theory for harmonic maps,. e. maps satisfyingwhich is equivalent to Δ. ∥ .. In contrast to Chapter 4, where we considered the Hopf differentialwe will also use derivatives of . of higher order. Let us first introduce some notations. We write
6#
發(fā)表于 2025-3-22 15:51:33 | 只看該作者
Wente tori,rvature lines. It leads to an overdetermined system of equations which can be solved by quadratures using elliptic integrals. And U. Abresch showed that some of the obtained immersed surfaces do close up, giving CMC tori [1] (see also [87]).
7#
發(fā)表于 2025-3-22 19:41:55 | 只看該作者
Working with the Hopf differential,e this property of . is invariant by conformal changes of variables, one might be interested in the behaviour of . by such a transformation. So let’s choose a conformal mapwhere Ω. is the domain of a map .:and let’s check how the corresponding function . transforms. We writefor the coordinates of Ω.
8#
發(fā)表于 2025-3-23 00:08:43 | 只看該作者
9#
發(fā)表于 2025-3-23 04:46:36 | 只看該作者
10#
發(fā)表于 2025-3-23 08:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉阴县| 顺义区| 岑巩县| 子洲县| 高唐县| 京山县| 庆安县| 柯坪县| 无锡市| 榆林市| 集贤县| 城口县| 嫩江县| 乐安县| 乌鲁木齐市| 清水县| 东山县| 元朗区| 胶州市| 沙坪坝区| 嘉祥县| 东至县| 南雄市| 大化| 临安市| 浦东新区| 南充市| 彭阳县| 葵青区| 眉山市| 蒲江县| 岐山县| 于田县| 白水县| 治多县| 秦皇岛市| 明水县| 米泉市| 社会| 乌鲁木齐县| 多伦县|