找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Vector Fields, Ricci Solitons and Related Topics; Ramesh Sharma,Sharief Deshmukh Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 05:47:44 | 只看該作者
Gro Kv?le,Charlotte Kiland,Dag Olaf TorjesenThis chapter introduces some important space-times of general relativity, then describes their kinematics, Einstein’s field equations and energy conditions. Subsequently, it provides characterizations and classifications of space-times (in general, Lorentzian manifolds) that admit conformal (including Killing and homothetic) vector fields.
22#
發(fā)表于 2025-3-25 10:15:31 | 只看該作者
23#
發(fā)表于 2025-3-25 14:52:13 | 只看該作者
24#
發(fā)表于 2025-3-25 17:59:27 | 只看該作者
Ronald Barnett Prof., Ph.D., D.Lit.This chapter starts with Yamabe problem, and then describes the Yamabe flow and Yamabe solitons. Finally, it provides characterizations of Yamabe almost solitons and also contact metrics as Yamabe solitons.
25#
發(fā)表于 2025-3-25 22:54:13 | 只看該作者
Lie Group and Lie Derivative,This chapter begins with a brief review of Lie groups and their Lie algebras. Subsequently, it introduces the notion of the Lie derivative, its properties and closes with formulas showing the deviation from commutativity of Lie and covariant derivatives.
26#
發(fā)表于 2025-3-26 03:10:23 | 只看該作者
Conformal Vector Fields,This chapter is devoted to conformal Killing vector fields, their integrability conditions, their zeros and Lichnerowicz conjecture on semi-Riemannian and CR manifolds.
27#
發(fā)表于 2025-3-26 07:08:47 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:31:14 | 只看該作者
Ricci Solitons,This chapter provides the basic theory of Ricci flow, Ricci solitons, their examples, important properties and known results.
30#
發(fā)表于 2025-3-26 18:16:26 | 只看該作者
Ricci Almost Solitons and Generalized Quasi-Einstein Manifolds,This chapter gives a coverage on Ricci almost soliton and its characterization and classification when it is compact, or contact metric. Next, it describes Generalized quasi-Einstein manifolds, its properties and classifications under various geometric conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漳平市| 营山县| 清水县| 镶黄旗| SHOW| 延安市| 广昌县| 当阳市| 万盛区| 修武县| 休宁县| 乌苏市| 灵宝市| 库伦旗| 云安县| 克山县| 临湘市| 玉屏| 类乌齐县| 绥宁县| 阳春市| 天祝| 鄂伦春自治旗| 奎屯市| 舟山市| 郓城县| 陆丰市| 灵山县| 平塘县| 工布江达县| 南雄市| 黄陵县| 绥阳县| 富民县| 长阳| 涞水县| 普兰店市| 高唐县| 威信县| 桐梓县| 资溪县|