找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Vector Fields, Ricci Solitons and Related Topics; Ramesh Sharma,Sharief Deshmukh Book 2024 The Editor(s) (if applicable) and The

[復制鏈接]
查看: 53494|回復: 46
樓主
發(fā)表于 2025-3-21 18:25:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics
編輯Ramesh Sharma,Sharief Deshmukh
視頻videohttp://file.papertrans.cn/236/235422/235422.mp4
概述Masters manifold theory, conformal transformations, and Ricci solitons to enhance your skills in geometry and physics.Discovers the interplay between conformal vector fields and Ricci solitons and the
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Conformal Vector Fields, Ricci Solitons and Related Topics;  Ramesh Sharma,Sharief Deshmukh Book 2024 The Editor(s) (if applicable) and The
描述This book provides an up-to-date introduction to the theory of manifolds, submanifolds, semi-Riemannian geometry and warped product geometry, and their applications in geometry and physics. It then explores the properties of conformal vector fields and conformal transformations, including their fixed points, essentiality and the Lichnerowicz conjecture. Later chapters focus on the study of conformal vector fields on special Riemannian and Lorentzian manifolds, with a special emphasis on general relativistic spacetimes and the evolution of conformal vector fields in terms of initial data..The book also delves into the realm of Ricci flow and Ricci solitons, starting with motivations and basic results and moving on to more advanced topics within the framework of Riemannian geometry. The main emphasis of the book is on the interplay between conformal vector fields and Ricci solitons, and their applications in contact geometry. The book highlights the fact that Nil-solitons and Sol-solitons naturally arise in the study of Ricci solitons in contact geometry. Finally, the book gives a comprehensive overview of generalized quasi-Einstein structures and Yamabe solitons and their roles in c
出版日期Book 2024
關鍵詞Submanifolds; Lie Group; Conformal Vector Fields; Quasi-Einstein Manifolds; Riemannian and Lorentzian Ge
版次1
doihttps://doi.org/10.1007/978-981-99-9258-4
isbn_softcover978-981-99-9260-7
isbn_ebook978-981-99-9258-4Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics影響因子(影響力)




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics影響因子(影響力)學科排名




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics網(wǎng)絡公開度




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics網(wǎng)絡公開度學科排名




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics被引頻次




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics被引頻次學科排名




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics年度引用




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics年度引用學科排名




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics讀者反饋




書目名稱Conformal Vector Fields, Ricci Solitons and Related Topics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:16:01 | 只看該作者
Conformal Transformations,and new metrics. It also provides a brief account of some important tensors and their behavior under conformal transformations. Finally, isometries on Riemannian and Lorentzian manifolds have been discussed.
板凳
發(fā)表于 2025-3-22 00:54:12 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:49 | 只看該作者
2363-6149 ol-solitons naturally arise in the study of Ricci solitons in contact geometry. Finally, the book gives a comprehensive overview of generalized quasi-Einstein structures and Yamabe solitons and their roles in c978-981-99-9260-7978-981-99-9258-4Series ISSN 2363-6149 Series E-ISSN 2363-6157
5#
發(fā)表于 2025-3-22 12:46:00 | 只看該作者
6#
發(fā)表于 2025-3-22 13:21:51 | 只看該作者
7#
發(fā)表于 2025-3-22 18:55:40 | 只看該作者
2363-6149 y between conformal vector fields and Ricci solitons and theThis book provides an up-to-date introduction to the theory of manifolds, submanifolds, semi-Riemannian geometry and warped product geometry, and their applications in geometry and physics. It then explores the properties of conformal vecto
8#
發(fā)表于 2025-3-22 21:44:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:13:22 | 只看該作者
Hans Moonen,Jos van Hillegersbergforms, followed by linear connection and curvature tensor. Later, we briefly introduce the semi-Riemannian metric, its Levi-Civita connection and curvature tensors. Then we recall the basic notion and equations of submanifolds of semi-Riemannian manifolds. Finally, we present basic concepts and form
10#
發(fā)表于 2025-3-23 06:47:31 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
化德县| 兰考县| 清涧县| 夏津县| 望谟县| 黔西县| 温泉县| 抚顺市| 宁波市| 平顶山市| 大厂| 清丰县| 嫩江县| 石泉县| 洛宁县| 城步| 衢州市| 新源县| 四平市| 清水县| 商丘市| 台南县| 孝昌县| 皮山县| 泾川县| 浦江县| 阳山县| 神农架林区| 新晃| 白沙| 佛冈县| 保山市| 金门县| 方城县| 沅江市| 莒南县| 正阳县| 瑞昌市| 盐边县| 库尔勒市| 舞钢市|