找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
樓主: 脾氣好
51#
發(fā)表于 2025-3-30 08:31:39 | 只看該作者
Adversarial Learning for Visual Storytelling with Sense Group Partitionision and language research, the techniques for sequential vision-to-language are still far away from being perfect. Due to the limitation of maximum likelihood estimation on training, the majority of existing models encourage high resemblance to texts in the training database, which makes the descr
52#
發(fā)表于 2025-3-30 14:09:38 | 只看該作者
Laser Scar Detection in Fundus Images Using Convolutional Neural Networksbehind circular or irregular scars in the retina. Laser scar detection in fundus images is thus important for automated DR screening. Despite its importance, the problem is understudied in terms of both datasets and methods. This paper makes the first attempt to detect laser-scar images by deep lear
53#
發(fā)表于 2025-3-30 20:07:36 | 只看該作者
54#
發(fā)表于 2025-3-31 00:39:34 | 只看該作者
55#
發(fā)表于 2025-3-31 04:33:23 | 只看該作者
A Joint Local and Global Deep Metric Learning Method for Caricature Recognitioneen photographs and caricatures, making it nontrivial to match the features of photographs and caricatures. To address the problem, a joint local and global metric learning method (LGDML) is proposed. First, joint local and global feature representation is learnt with convolutional neural networks t
56#
發(fā)表于 2025-3-31 05:08:04 | 只看該作者
Fast Single Shot Instance Segmentationg every individual instance (instance segmentation) in a flexible and fast way. In the pipeline of FSSI, the instance segmentation task is divided into three parallel sub-tasks: object detection, semantic segmentation, and direction prediction. The instance segmentation result is then generated from
57#
發(fā)表于 2025-3-31 10:20:17 | 只看該作者
58#
發(fā)表于 2025-3-31 17:00:04 | 只看該作者
Symmetry-Aware Face Completion with Generative Adversarial Networksthout taking these characteristics into account, existing face completion techniques usually fail to produce a photo-realistic result, especially for the missing key components (e.g., eyes and mouths). In this paper, we propose a symmetry-aware face completion method based on facial structural featu
59#
發(fā)表于 2025-3-31 17:35:20 | 只看該作者
60#
發(fā)表于 2025-4-1 00:07:53 | 只看該作者
https://doi.org/10.1007/978-3-030-20870-7artificial intelligence; computer vision; databases; image coding; image processing; image reconstruction
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 11:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼玛县| 屏山县| 武强县| 肥西县| 边坝县| 泌阳县| 廉江市| 铜陵市| 绥化市| 武定县| 福海县| 全州县| 抚宁县| 长汀县| 万州区| 丁青县| 桐柏县| 丰都县| 屏边| 大安市| 衡阳县| 陵川县| 长宁区| 胶州市| 荆州市| 康马县| 昌宁县| 揭东县| 台中市| 怀来县| 叶城县| 泾阳县| 灵寿县| 通渭县| 琼结县| 浏阳市| 郎溪县| 社会| 陆河县| 克什克腾旗| 郑州市|