找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
查看: 43028|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:38:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Computer Vision – ACCV 2018
副標(biāo)題14th Asian Conferenc
編輯C.V. Jawahar,Hongdong Li,Konrad Schindler
視頻videohttp://file.papertrans.cn/235/234125/234125.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; computer vision; databases; image coding; image processing; image reconstruction
版次1
doihttps://doi.org/10.1007/978-3-030-20870-7
isbn_softcover978-3-030-20869-1
isbn_ebook978-3-030-20870-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Computer Vision – ACCV 2018影響因子(影響力)




書(shū)目名稱Computer Vision – ACCV 2018影響因子(影響力)學(xué)科排名




書(shū)目名稱Computer Vision – ACCV 2018網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Computer Vision – ACCV 2018網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Computer Vision – ACCV 2018被引頻次




書(shū)目名稱Computer Vision – ACCV 2018被引頻次學(xué)科排名




書(shū)目名稱Computer Vision – ACCV 2018年度引用




書(shū)目名稱Computer Vision – ACCV 2018年度引用學(xué)科排名




書(shū)目名稱Computer Vision – ACCV 2018讀者反饋




書(shū)目名稱Computer Vision – ACCV 2018讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:34 | 只看該作者
Dealing with Ambiguity in Robotic Grasping via Multiple Predictionsel that predicts a set of grasp hypotheses in under 60?ms, which is critical for real-time robotic applications. The grasp detection accuracy reaches over . for unseen objects, outperforming the current state of the art on this task.
板凳
發(fā)表于 2025-3-22 00:36:08 | 只看該作者
地板
發(fā)表于 2025-3-22 07:45:57 | 只看該作者
Robust Deep Multi-modal Learning Based on Gated Information Fusion Networkmodality according to the input feature maps to be fused. The combining weights are determined by applying the convolutional layers followed by the sigmoid function to the concatenated intermediate feature maps. The whole network including the CNN backbone and GIF is trained in an end-to-end fashion
5#
發(fā)表于 2025-3-22 11:56:07 | 只看該作者
Hardware-Aware Softmax Approximation for Deep Neural Networksating cost-intensive operations in Softmax (. exponential and division) with cost-effective operations (. addition and bit shifts). We designed and synthesized a hardware unit for our approximation approach, to estimate the area and energy consumption. In addition, we introduce a training method to
6#
發(fā)表于 2025-3-22 13:59:45 | 只看該作者
Video Object Segmentation with Language Referring Expressions. We show that our language-supervised approach performs on par with the methods which have access to a pixel-level mask of the target object on . and is competitive to methods using scribbles on the challenging . dataset.
7#
發(fā)表于 2025-3-22 21:07:30 | 只看該作者
Nonlinear Subspace Feature Enhancement for Image Set Classificatione of subspace-based classifiers such as sparse representation-based classification. We describe how the structured loss function of NSFE can be optimized in a batch-by-batch fashion by a two-step alternating algorithm. The algorithm makes very few assumptions about the form of the embedding to be le
8#
發(fā)表于 2025-3-22 23:23:18 | 只看該作者
Adversarial Learning for Visual Storytelling with Sense Group Partitionup as the unit, we propose to do the paragraph generation at sense group level instead of sentence level. Experiments on the widely-used dataset show that our approach generates higher-quality descriptions than previous baselines.
9#
發(fā)表于 2025-3-23 01:37:49 | 只看該作者
10#
發(fā)表于 2025-3-23 06:09:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
将乐县| 泸定县| 泾川县| 南雄市| 桂东县| 昌都县| 嘉鱼县| 芒康县| 江都市| 武乡县| 军事| 周口市| 昆山市| 阿坝县| 大庆市| 嵩明县| 温州市| 康马县| 德清县| 隆昌县| 闸北区| 临桂县| 平顺县| 弋阳县| 隆林| 崇义县| 扎鲁特旗| 左云县| 阿勒泰市| 荆州市| 乡城县| 沧州市| 新乡县| 茶陵县| 高陵县| 塔城市| 靖州| 芷江| 和硕县| 吴忠市| 凤冈县|