找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ACCV 2014 Workshops; Singapore, Singapore C. V. Jawahar,Shiguang Shan Conference proceedings 2015 Springer International

[復制鏈接]
樓主: 變更
51#
發(fā)表于 2025-3-30 11:10:18 | 只看該作者
Feature Learning for the Image Retrieval Taskistance to the assigned codeword before aggregating them as part of the encoding process. Using the VLAD feature encoder, we show experimentally that our proposed optimized power normalization method and local descriptor weighting method yield improvements on a standard dataset.
52#
發(fā)表于 2025-3-30 13:19:27 | 只看該作者
Conference proceedings 2015nction with the 12th Asian Conference on Computer Vision, ACCV 2014, in Singapore, in November 2014. The 153 full papers presented were selected from numerous submissions. LNCS 9008 contains the papers selected for the Workshop on Human Gait and Action Analysis in the Wild, the Second International
53#
發(fā)表于 2025-3-30 19:09:05 | 只看該作者
54#
發(fā)表于 2025-3-30 21:26:04 | 只看該作者
Christian Humanism and the Jewsfalse identification of tumors. For tumor classification, we used GLCM based textural features. A sliding window is used to search over the lung parenchyma region and extract the features. Chi-Square distance measure is used to classify the tumor. The performance of GLCM features for tumor classification is evaluated with the histogram features.
55#
發(fā)表于 2025-3-31 01:06:40 | 只看該作者
https://doi.org/10.1007/978-3-030-27025-4ns in the metric tensor. The categorization of 3D objects is carried out using polynomial kernel SVM classifier. The effectiveness of the proposed framework is demonstrated on 3D objects obtained from different datasets and achieved comparable results.
56#
發(fā)表于 2025-3-31 06:59:37 | 只看該作者
57#
發(fā)表于 2025-3-31 10:38:00 | 只看該作者
58#
發(fā)表于 2025-3-31 16:05:06 | 只看該作者
59#
發(fā)表于 2025-3-31 19:23:25 | 只看該作者
60#
發(fā)表于 2025-4-1 01:44:04 | 只看該作者
Metric Tensor and Christoffel Symbols Based 3D Object Categorizationns in the metric tensor. The categorization of 3D objects is carried out using polynomial kernel SVM classifier. The effectiveness of the proposed framework is demonstrated on 3D objects obtained from different datasets and achieved comparable results.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清镇市| 定西市| 丁青县| 玉山县| 榆林市| 福海县| 绍兴县| 灵台县| 武宁县| 苗栗县| 鄂托克旗| 洪雅县| 双柏县| 陵川县| 洪雅县| 盖州市| 凉城县| 肃南| 肃北| 日照市| 灌南县| 安阳县| 榆树市| 珲春市| 运城市| 上栗县| 平阴县| 桑日县| 灵武市| 贡嘎县| 南通市| 广丰县| 柞水县| 务川| 合肥市| 汉源县| 四会市| 宣化县| 大余县| 萝北县| 涡阳县|