找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision - ACCV 2014 Workshops; Singapore, Singapore C. V. Jawahar,Shiguang Shan Conference proceedings 2015 Springer International

[復(fù)制鏈接]
樓主: 變更
41#
發(fā)表于 2025-3-28 17:45:35 | 只看該作者
The Cultural Sociology of Art and Musicghting the visual features on the basis of their appropriateness for each concept pair. Experiments demonstrated that the proposed method outperformed a method using only a single kind of visual feature and one combining multiple kinds of features with a fixed weight.
42#
發(fā)表于 2025-3-28 18:45:56 | 只看該作者
43#
發(fā)表于 2025-3-29 02:15:49 | 只看該作者
44#
發(fā)表于 2025-3-29 04:40:52 | 只看該作者
https://doi.org/10.1007/978-3-030-27025-4tudy the performance of the proposed method. These experiments demonstrate much improvement over the state-of-the-art algorithms that are either based on label propagation or semi-supervised graph-based embedding.
45#
發(fā)表于 2025-3-29 08:12:12 | 只看該作者
Corporate Culture Out of Control?,istance to the assigned codeword before aggregating them as part of the encoding process. Using the VLAD feature encoder, we show experimentally that our proposed optimized power normalization method and local descriptor weighting method yield improvements on a standard dataset.
46#
發(fā)表于 2025-3-29 15:09:27 | 只看該作者
Blur-Robust Face Recognition via Transformation Learningto the best matched PSF, where the transformation for each PSF is learned in the training stage. Experimental results on the FERET database show the proposed method achieve comparable performance against the state-of-the-art blur-invariant face recognition methods, such as LPQ and FADEIN.
47#
發(fā)表于 2025-3-29 18:11:36 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:00 | 只看該作者
49#
發(fā)表于 2025-3-30 03:04:03 | 只看該作者
50#
發(fā)表于 2025-3-30 07:16:43 | 只看該作者
A Flexible Semi-supervised Feature Extraction Method for Image Classificationtudy the performance of the proposed method. These experiments demonstrate much improvement over the state-of-the-art algorithms that are either based on label propagation or semi-supervised graph-based embedding.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云龙县| 根河市| 信丰县| 中江县| 宁乡县| 南阳市| 芮城县| 衡山县| 尤溪县| 靖远县| 集贤县| 勃利县| 合肥市| 扶沟县| 富源县| 类乌齐县| 磴口县| 梅州市| 巫溪县| 启东市| 方正县| 湘西| 凤庆县| 雅安市| 邳州市| 扎鲁特旗| 通州区| 宜川县| 北碚区| 海门市| 瑞安市| 喀什市| 长沙市| 焉耆| 静海县| 延安市| 仁布县| 呼伦贝尔市| 大冶市| 岑溪市| 顺义区|