找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
31#
發(fā)表于 2025-3-26 22:01:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:20:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:06 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
34#
發(fā)表于 2025-3-27 12:42:45 | 只看該作者
Bach to Rock, A Musical OdysseyThe underlying concept of this work is the synthesis of two useful concepts: the application of . to a shape; and the study of the . and . of a parametrically defined shape as fundamental geometric measures.
35#
發(fā)表于 2025-3-27 16:40:27 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
36#
發(fā)表于 2025-3-27 19:45:32 | 只看該作者
Heidegger’s Philosophy of TechnologyConsider a space curve (in three dimensions) parametrized with respect to an arbitrary parameter . [8, 9, 10, 15, 24]. The unit tangent vector has the same direction and sense as the parametric first derivative vector, but it is normalized.
37#
發(fā)表于 2025-3-28 00:09:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:16:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:24 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4An important observation is that β1.(.) and β2.(.) (equation (14.3)) can each be written as a pair of equations of similar form; specifically,.where . and . were defined in equation (14.3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚州市| 扬州市| 肇庆市| 连山| 平江县| 瓦房店市| 大荔县| 武隆县| 磐石市| 察雅县| 阳西县| 山阳县| 洪洞县| 上林县| 侯马市| 孟州市| 夏河县| 泽库县| 汉寿县| 房产| 霍邱县| 天水市| 茂名市| 教育| 兴仁县| 兴安盟| 荥阳市| 西充县| 额敏县| 大名县| 扶余县| 睢宁县| 洞头县| 铜鼓县| 遂川县| 五指山市| 武安市| 财经| 延长县| 成都市| 巫溪县|