找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:06:29 | 只看該作者
22#
發(fā)表于 2025-3-25 10:59:22 | 只看該作者
Technology and the Human: Hans Jonasxpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
23#
發(fā)表于 2025-3-25 13:58:39 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:17 | 只看該作者
Technik der Impfstoffe und Heilsera involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
25#
發(fā)表于 2025-3-25 22:33:55 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4pe parameters. Analogous to the Beta-spline curve, they will now be generalized to be . shape parameters, each varying continuously along the surface. The continuous analogues of β1 and β2 will be denoted β1.(.) and β2.(.), respectively, and describe the value of each shape parameter at the point ..
26#
發(fā)表于 2025-3-26 03:58:28 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
27#
發(fā)表于 2025-3-26 07:39:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:00:10 | 只看該作者
29#
發(fā)表于 2025-3-26 13:45:41 | 只看該作者
30#
發(fā)表于 2025-3-26 16:47:51 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8uitively “pull out” these points by increasing tension. This concept was first analytically modeled by Schweikert in [23] and an alternative development was given in [6] and generalized in [19]. A detailed derivation of the generalized form based on a variational principle is given in [1].
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁陕县| 长垣县| 竹溪县| 东乡县| 昌都县| 达孜县| 锡林郭勒盟| 河东区| 荔浦县| 台湾省| 铜鼓县| 罗平县| 丹棱县| 乐东| 江阴市| 开江县| 叶城县| 腾冲县| 龙游县| 永兴县| 龙门县| 洛川县| 军事| 偏关县| 奉化市| 淅川县| 潮安县| 株洲县| 商城县| 汕头市| 青川县| 溧水县| 敖汉旗| 洪洞县| 灵寿县| 中西区| 扶风县| 白水县| 忻城县| 工布江达县| 襄城县|