找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Robotic Models of the Hierarchical Organization of Behavior; Gianluca Baldassarre,Marco Mirolli Book 2013 Springer-Verla

[復制鏈接]
樓主: 初生
31#
發(fā)表于 2025-3-27 00:48:51 | 只看該作者
The Hierarchical Organisation of Cortical and Basal-Ganglia Systems: A Computationally-Informed Revil picture that emerges is that the cortical and the basal ganglia systems form two highly-organised hierarchical systems working in close synergy and jointly solving all the challenges of choice, selection, and implementation needed to acquire and express adaptive behaviour.
32#
發(fā)表于 2025-3-27 01:22:02 | 只看該作者
Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humansmplished by identifying useful subgoal states, and that this might in turn be accomplished through a structural analysis of the given task domain. We review results from a set of behavioral and neuroimaging experiments, in which we have investigated the relevance of these ideas to human learning and
33#
發(fā)表于 2025-3-27 06:52:07 | 只看該作者
34#
發(fā)表于 2025-3-27 09:34:55 | 只看該作者
Book 2013 of the brain. They might even lead to the cumulative acquisition of an ever-increasing number of skills, which seems to be a characteristic of mammals, and humans in particular..This book is a comprehensive overview of the state of the art on the modeling of the hierarchical organization of behavio
35#
發(fā)表于 2025-3-27 14:19:15 | 只看該作者
Book 2013t of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to require a modular and hierarchical organization. In this way, different modules can acquire different skills without catastrophic interference, and h
36#
發(fā)表于 2025-3-27 20:24:10 | 只看該作者
37#
發(fā)表于 2025-3-27 22:30:42 | 只看該作者
Panayiotis Tsokas,Robert D. Blitzercal reinforcement learning to illustrate the influence of behavioral hierarchy on exploration and representation. Beyond illustrating these features, the examples provide support for the central role of behavioral hierarchy in development and learning for both artificial and natural agents.
38#
發(fā)表于 2025-3-28 03:03:50 | 只看該作者
Behavioral Hierarchy: Exploration and Representationcal reinforcement learning to illustrate the influence of behavioral hierarchy on exploration and representation. Beyond illustrating these features, the examples provide support for the central role of behavioral hierarchy in development and learning for both artificial and natural agents.
39#
發(fā)表于 2025-3-28 09:15:37 | 只看該作者
Peter R. Dunkley,Phillip J. Robinsonand interference is examined together with some interpretations in terms of computational models. Finally, we present some possible approaches to the issue of learning multiple tasks while avoiding catastrophic interference in bio-inspired learning architectures.
40#
發(fā)表于 2025-3-28 13:06:20 | 只看該作者
Generalization and Interference in Human Motor Controland interference is examined together with some interpretations in terms of computational models. Finally, we present some possible approaches to the issue of learning multiple tasks while avoiding catastrophic interference in bio-inspired learning architectures.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
潼关县| 托里县| 奇台县| 武强县| 仁寿县| 保山市| 浮梁县| 长宁区| 淮北市| 津南区| 天柱县| 西华县| 陈巴尔虎旗| 德化县| 葫芦岛市| 资兴市| 宁化县| 北宁市| 屏山县| 许昌县| 荆门市| 涪陵区| 灵武市| 吕梁市| 青岛市| 商水县| 通城县| 微山县| 锡林郭勒盟| 景洪市| 澄迈县| 阜阳市| 黄平县| 柏乡县| 外汇| 车险| 修文县| 故城县| 青冈县| 淮安市| 扶绥县|