找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Machine Learning Tools for Archaeological Site Modeling; Maria Elena Castiello Book 2022 The Editor(s) (if applicable) a

[復制鏈接]
樓主: NERVE
11#
發(fā)表于 2025-3-23 10:05:58 | 只看該作者
Results and Discussionion. An analysis of the partial dependence indicates the effects of the variables on the predicted outcome of the Machine Learning model. Finally, the validity assessment procedure, ad hoc created for this model, highlights the limitations and the advantages of the Random Forest-based approach for Archaeological Site Modeling.
12#
發(fā)表于 2025-3-23 14:52:12 | 只看該作者
Conclusionsn of site detection and the issue of preservation and conservation of archaeological sites in the long-term perspective by combining cutting-edge technologies with analytical archaeological reasoning. It represents a unique and innovative approach for modeling archaeological sites at any spatio-temporal scale.
13#
發(fā)表于 2025-3-23 21:56:28 | 只看該作者
https://doi.org/10.1007/978-3-662-10179-7ness inherent to the data and its delivering in Archaeological Predictive Maps is further tackled and summarized. Finally, more complex, non-linear machine learning and data mining approaches are described, with particular emphasis on the Random Forest algorithm as fundamental part of the methodological procedure developed in this study.
14#
發(fā)表于 2025-3-24 01:08:05 | 只看該作者
,Verzeichnis der verwendeten Abkürzungen,omparative way, creating a common data architecture allowing for supra-regional analyses. Furthermore, the geo-environmental variables assumed to have influenced site location choices during Roman times and used as predictors in the modeling procedure are described.
15#
發(fā)表于 2025-3-24 02:39:20 | 只看該作者
Symptoms and Signs in Pediatric Surgeryion. An analysis of the partial dependence indicates the effects of the variables on the predicted outcome of the Machine Learning model. Finally, the validity assessment procedure, ad hoc created for this model, highlights the limitations and the advantages of the Random Forest-based approach for Archaeological Site Modeling.
16#
發(fā)表于 2025-3-24 06:51:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:05:18 | 只看該作者
Book 2022nd suggest a model validation procedure.?It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.. .?.
18#
發(fā)表于 2025-3-24 16:45:16 | 只看該作者
Computational and Machine Learning Tools for Archaeological Site Modeling
19#
發(fā)表于 2025-3-24 22:38:23 | 只看該作者
20#
發(fā)表于 2025-3-25 02:32:41 | 只看該作者
Maria Elena CastielloNominated as an outstanding PhD thesis by the University of Bern, Switzerland.Describes novel methods for investigating archaeological settlement patterns and locational preference choices.Proposes a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 22:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
莎车县| 株洲县| 台东县| 新蔡县| 云南省| 福海县| 永川市| 团风县| 洛阳市| 河南省| 乐山市| 莱阳市| 西昌市| 河南省| 宁强县| 江北区| 南和县| 延庆县| 南充市| 临西县| 淮滨县| 兴义市| 皋兰县| 江油市| 博兴县| 芷江| 公主岭市| 新疆| 武汉市| 安塞县| 泗阳县| 湟源县| 鄂尔多斯市| 张家口市| 平舆县| 若尔盖县| 雅江县| 道真| 五河县| 苍溪县| 永州市|