找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational and Machine Learning Tools for Archaeological Site Modeling; Maria Elena Castiello Book 2022 The Editor(s) (if applicable) a

[復(fù)制鏈接]
查看: 50945|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:08:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling
編輯Maria Elena Castiello
視頻videohttp://file.papertrans.cn/234/233250/233250.mp4
概述Nominated as an outstanding PhD thesis by the University of Bern, Switzerland.Describes novel methods for investigating archaeological settlement patterns and locational preference choices.Proposes a
叢書名稱Springer Theses
圖書封面Titlebook: Computational and Machine Learning Tools for Archaeological Site Modeling;  Maria Elena Castiello Book 2022 The Editor(s) (if applicable) a
描述This book describes a novel machine-learning based approach?? to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure.?It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.. .?.
出版日期Book 2022
關(guān)鍵詞Machine Learning in Archaeology; Random Forest in Archaeology; Computers Application in Archaeology; Co
版次1
doihttps://doi.org/10.1007/978-3-030-88567-0
isbn_softcover978-3-030-88569-4
isbn_ebook978-3-030-88567-0Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling影響因子(影響力)




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling影響因子(影響力)學(xué)科排名




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling網(wǎng)絡(luò)公開度




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling被引頻次




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling被引頻次學(xué)科排名




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling年度引用




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling年度引用學(xué)科排名




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling讀者反饋




書目名稱Computational and Machine Learning Tools for Archaeological Site Modeling讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:33 | 只看該作者
Modeling Approachs is then presented, including the first results about site locations and their environment, at a regional and supra-regional scale. Finally, the chosen Machine Learning algorithm (Random Forest), its parameters and settings are described, offering a reproducible narrative methodological protocol.
板凳
發(fā)表于 2025-3-22 01:41:18 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:03 | 只看該作者
2190-5053 ement patterns and locational preference choices.Proposes a This book describes a novel machine-learning based approach?? to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions
5#
發(fā)表于 2025-3-22 11:05:00 | 只看該作者
6#
發(fā)表于 2025-3-22 16:17:54 | 只看該作者
Symptome der Haut/Hautanhangsgebilde, concept is provided and an introduction to Geographic Information Systems (GIS) is given with respect to their specific use for Archaeological Site Modeling procedures. Ultimately, the gradual adoption of computer and quantitative applications in archaeology and cultural heritage management is explored.
7#
發(fā)表于 2025-3-22 19:41:49 | 只看該作者
Introductionhapter provides a general introduction to the research context and the organization of Swiss Cultural Heritage management. It synthesizes the motivation and research questions behind the study and outlines the challenges and the objectives that can arise from such innovative research at the cross roads of multiple disciplines.
8#
發(fā)表于 2025-3-23 00:37:45 | 只看該作者
Space, Environment and Quantitative Approaches in Archaeology concept is provided and an introduction to Geographic Information Systems (GIS) is given with respect to their specific use for Archaeological Site Modeling procedures. Ultimately, the gradual adoption of computer and quantitative applications in archaeology and cultural heritage management is explored.
9#
發(fā)表于 2025-3-23 04:04:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:38:51 | 只看該作者
Materials and Dataomparative way, creating a common data architecture allowing for supra-regional analyses. Furthermore, the geo-environmental variables assumed to have influenced site location choices during Roman times and used as predictors in the modeling procedure are described.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 01:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 嫩江县| 金山区| 金寨县| 平阳县| 游戏| 广平县| 团风县| 沿河| 桂东县| 安塞县| 榕江县| 大洼县| 翁源县| 湾仔区| 蒙阴县| 会泽县| 阳曲县| 南城县| 山西省| 兰坪| 肥西县| 凤山市| 赤峰市| 兴化市| 合江县| 丹寨县| 昭通市| 元朗区| 赞皇县| 长兴县| 宜春市| 达州市| 绥德县| 聂拉木县| 墨玉县| 于田县| 邛崃市| 广汉市| 获嘉县| 东平县|