找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation of Curves and Surfaces; Wolfgang Dahmen,Mariano Gasca,Charles A. Micchelli Book 1990 Kluwer Academic Publishers 1990 3D.Approx

[復(fù)制鏈接]
樓主: otitis-externa
31#
發(fā)表于 2025-3-26 22:04:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:34:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:54:36 | 只看該作者
Superconvergence Relations, FESR and Duality of wavelets by multiresolution analysis. This paper summarizes some of the results obtained in [1] on the convergence of stationary subdivision and the structure of the limiting surface and relates them to the above topics.
34#
發(fā)表于 2025-3-27 10:03:38 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:50 | 只看該作者
The S-matrix: From Heisenberg Till Nowpresentation schemes used within these systems nevertheless differ much with regard to the types of polynomial bases and the maximum polynomial degrees provided. Bernstein-Bézier, Schoenberg-B-Spline, Hermite-Coons type basis functions are frequently used in different systems. Polynomial degrees var
36#
發(fā)表于 2025-3-27 21:42:21 | 只看該作者
37#
發(fā)表于 2025-3-27 23:41:04 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorions of the notion of .-splines to the multi-variable setting in the literature, very little is known at this writing on the structure and theory of all compactly supported smooth piecewise polynomial functions on a preassigned grid partition Δ in ?., . > 1, unless Δ is perfectly regular. While we d
38#
發(fā)表于 2025-3-28 03:21:57 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Taylorpolating or approximating function preserving some convex constraints such as monotonicity or convexity of given data. Monovariate shape preserving interpolation schemes and related algorithms, in particular of the . type, are considered. A short survey of local methods to interpolate surfaces under
39#
發(fā)表于 2025-3-28 07:10:33 | 只看該作者
40#
發(fā)表于 2025-3-28 10:35:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东兴市| 湖口县| 瑞金市| 安康市| 元谋县| 塔城市| 宿迁市| 大余县| 雷州市| 昭觉县| 宜春市| 临泽县| 喀喇| 贵德县| 和顺县| 巨鹿县| 峨边| 平塘县| 民权县| 北票市| 本溪市| 海林市| 河西区| 昭觉县| 怀柔区| 韩城市| 和林格尔县| 长宁区| 韩城市| 阜阳市| 灵寿县| 青浦区| 常宁市| 嵊泗县| 蓝田县| 肥乡县| 六枝特区| 平和县| 峨眉山市| 芜湖市| 龙游县|