找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computation of Curves and Surfaces; Wolfgang Dahmen,Mariano Gasca,Charles A. Micchelli Book 1990 Kluwer Academic Publishers 1990 3D.Approx

[復(fù)制鏈接]
樓主: otitis-externa
11#
發(fā)表于 2025-3-23 12:04:51 | 只看該作者
12#
發(fā)表于 2025-3-23 17:45:29 | 只看該作者
13#
發(fā)表于 2025-3-23 19:09:29 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:24 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:49 | 只看該作者
Smooth Parametric Surfaces and n-Sided PatchesAGD can be pieced together to form a smooth C. surface. The theory is applied to the problem of filling an n-sided hole occurring within a smooth rectangular patch complex. A number of solutions to this problem are surveyed.
16#
發(fā)表于 2025-3-24 07:10:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:01:19 | 只看該作者
I. Antoniadis,H. Partouche,T. R. Tayloreast one common vertex and with the interior of the support containing at most one vertex of Δ. These functions are called vertex splines. The objective of this presentation is to give a brief description of the notion of vertex splines and to discuss their applications to interpolation of discrete data with or without constraints.
18#
發(fā)表于 2025-3-24 18:08:56 | 只看該作者
Vertex Splines and Their Applications to Interpolation of Discrete Dataeast one common vertex and with the interior of the support containing at most one vertex of Δ. These functions are called vertex splines. The objective of this presentation is to give a brief description of the notion of vertex splines and to discuss their applications to interpolation of discrete data with or without constraints.
19#
發(fā)表于 2025-3-24 21:43:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:48:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建宁县| 建始县| 双城市| 娄烦县| 科技| 平果县| 吉隆县| 福泉市| 鸡西市| 嫩江县| 土默特右旗| 塔城市| 琼中| 北川| 吉水县| 安新县| 竹北市| 资兴市| 清原| 泸州市| 枝江市| SHOW| 罗田县| 横山县| 泰安市| 伊宁县| 定州市| 班戈县| 库尔勒市| 四会市| 密云县| 湖州市| 贡嘎县| 德江县| 巴林左旗| 贵州省| 城市| 普陀区| 南江县| 正蓝旗| 伊川县|