找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[復(fù)制鏈接]
樓主: 平凡人
11#
發(fā)表于 2025-3-23 12:21:05 | 只看該作者
Big Data Abstraction Through Multiagent Systems,ow the divide-and-conquer approach of multiagent systems improves handling huge datasets. We propose four multiagent systems that can help generating abstraction with big data. We provide suggested reading and bibliographic notes. A list of references is provided in the end.
12#
發(fā)表于 2025-3-23 16:02:42 | 只看該作者
Introduction,lid representative subsets of original data and feature sets. All further data mining analysis can be based only on these representative subsets leading to significant reduction in storage space and time. Another important direction is to compress the data by some manner and operate in the compresse
13#
發(fā)表于 2025-3-23 19:02:37 | 只看該作者
Data Mining Paradigms, data mining. We elaborate some important data mining tasks such as clustering, classification, and association rule mining that are relevant to the content of the book. We discuss popular and representative algorithms of partitional and hierarchical data clustering. In classification, we discuss th
14#
發(fā)表于 2025-3-23 22:55:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:33:43 | 只看該作者
16#
發(fā)表于 2025-3-24 09:47:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:32:13 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:11 | 只看該作者
Optimal Dimensionality Reduction,ucing the features include conventional feature selection and extraction methods, frequent item support-based methods, and optimal feature selection approaches. In earlier chapters, we discussed feature selection based on frequent items. In the present chapter, we combine a nonlossy compression sche
19#
發(fā)表于 2025-3-24 22:47:12 | 只看該作者
Big Data Abstraction Through Multiagent Systems,tems. Big data is characterized by huge volumes of data that are not easily amenable for generating abstraction; variety of data formats, data frequency, types of data, and their integration; real or near-real time data processing for generating business or scientific value depending on nature of da
20#
發(fā)表于 2025-3-25 01:53:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五家渠市| 建阳市| 赞皇县| 齐河县| 顺平县| 登封市| 敦化市| 余江县| 盘锦市| 当雄县| 保亭| 太仓市| 吴堡县| 江西省| 武山县| 广州市| 汉阴县| 牡丹江市| 苗栗市| 大埔县| 南宫市| 南华县| 杭锦后旗| 西贡区| 兰考县| 武夷山市| 叙永县| 汽车| 惠安县| 中方县| 屏东市| 甘南县| 寻乌县| 诸暨市| 万年县| 灵川县| 乌鲁木齐县| 舞钢市| 浦北县| 康乐县| 共和县|