找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[復(fù)制鏈接]
查看: 33031|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:43:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets
副標(biāo)題A Machine Learning P
編輯T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman
視頻videohttp://file.papertrans.cn/232/231990/231990.mp4
概述Examines all aspects of data abstraction generation using a least number of database scans.Discusses compressing data through novel lossy and non-lossy schemes.Proposes schemes for carrying out cluste
叢書(shū)名稱(chēng)Advances in Computer Vision and Pattern Recognition
圖書(shū)封面Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V
描述This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features:?describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.
出版日期Book 2013
關(guān)鍵詞Classification; Clustering; Data Abstraction Generation; Data Compression; High-Dimensional Datasets
版次1
doihttps://doi.org/10.1007/978-1-4471-5607-9
isbn_softcover978-1-4471-7055-6
isbn_ebook978-1-4471-5607-9Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer-Verlag London 2013
The information of publication is updating

書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets影響因子(影響力)




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets被引頻次




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets被引頻次學(xué)科排名




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets年度引用




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets年度引用學(xué)科排名




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets讀者反饋




書(shū)目名稱(chēng)Compression Schemes for Mining Large Datasets讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:10:51 | 只看該作者
,1919–1923 “Independence or Death!”,vide a better classification accuracy than the original dataset. In this direction, we implement the proposed scheme on two large datasets, one with binary-valued features and the other with float-point-valued features. At the end of the chapter, we provide bibliographic notes and a list of referenc
地板
發(fā)表于 2025-3-22 06:10:46 | 只看該作者
5#
發(fā)表于 2025-3-22 09:15:17 | 只看該作者
Product Mix and Diversification,ow the divide-and-conquer approach of multiagent systems improves handling huge datasets. We propose four multiagent systems that can help generating abstraction with big data. We provide suggested reading and bibliographic notes. A list of references is provided in the end.
6#
發(fā)表于 2025-3-22 15:58:04 | 只看該作者
2191-6586 e in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.978-1-4471-7055-6978-1-4471-5607-9Series ISSN 2191-6586 Series E-ISSN 2191-6594
7#
發(fā)表于 2025-3-22 18:20:05 | 只看該作者
Data Mining Paradigms,n intermediate representation. The discussion on classification includes topics such as incremental classification and classification based on intermediate abstraction. We further discuss frequent-itemset mining with two directions such as divide-and-conquer itemset mining and intermediate abstracti
8#
發(fā)表于 2025-3-23 00:18:28 | 只看該作者
Dimensionality Reduction by Subsequence Pruning,earest neighbors. This results in lossy compression in two levels. Generating compressed testing data forms an interesting scheme too. We demonstrate significant reduction in data and its working on large handwritten digit data. We provide bibliographic notes and references at the end of the chapter
9#
發(fā)表于 2025-3-23 02:14:38 | 只看該作者
Data Compaction Through Simultaneous Selection of Prototypes and Features,vide a better classification accuracy than the original dataset. In this direction, we implement the proposed scheme on two large datasets, one with binary-valued features and the other with float-point-valued features. At the end of the chapter, we provide bibliographic notes and a list of referenc
10#
發(fā)表于 2025-3-23 06:57:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东源县| 尚义县| 永德县| 常熟市| 无棣县| 济源市| 潮安县| 灌云县| 泰兴市| 依兰县| 东乡| 渝北区| 安福县| 延吉市| 江华| 江北区| 马公市| 平顶山市| 吕梁市| 理塘县| 苗栗市| 闽清县| 通榆县| 邹城市| 黄龙县| 双柏县| 滕州市| 应用必备| 湘潭县| 类乌齐县| 聊城市| 蓬安县| 饶河县| 康马县| 桓台县| 萨嘎县| 崇信县| 郁南县| 金山区| 衡阳市| 庆元县|