找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 1987 Springer Science+Business Media New York 1987 algebra.lie algebra.lie group.r

[復制鏈接]
查看: 23995|回復: 42
樓主
發(fā)表于 2025-3-21 19:36:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Semisimple Lie Algebras
編輯Jean-Pierre Serre
視頻videohttp://file.papertrans.cn/232/231533/231533.mp4
圖書封面Titlebook: Complex Semisimple Lie Algebras;  Jean-Pierre Serre Book 1987 Springer Science+Business Media New York 1987 algebra.lie algebra.lie group.r
描述These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript.
出版日期Book 1987
關鍵詞algebra; lie algebra; lie group; representation theory
版次1
doihttps://doi.org/10.1007/978-1-4757-3910-7
isbn_softcover978-0-387-96569-7
isbn_ebook978-1-4757-3910-7
copyrightSpringer Science+Business Media New York 1987
The information of publication is updating

書目名稱Complex Semisimple Lie Algebras影響因子(影響力)




書目名稱Complex Semisimple Lie Algebras影響因子(影響力)學科排名




書目名稱Complex Semisimple Lie Algebras網絡公開度




書目名稱Complex Semisimple Lie Algebras網絡公開度學科排名




書目名稱Complex Semisimple Lie Algebras被引頻次




書目名稱Complex Semisimple Lie Algebras被引頻次學科排名




書目名稱Complex Semisimple Lie Algebras年度引用




書目名稱Complex Semisimple Lie Algebras年度引用學科排名




書目名稱Complex Semisimple Lie Algebras讀者反饋




書目名稱Complex Semisimple Lie Algebras讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:31:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:45:15 | 只看該作者
地板
發(fā)表于 2025-3-22 08:31:31 | 只看該作者
ng the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript.978-0-387-96569-7978-1-4757-3910-7
5#
發(fā)表于 2025-3-22 09:47:02 | 只看該作者
Historische Entwicklung von VerkehrsnetzenThe Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Secs. 7 and 8 we assume that . has characteristic O. The Lie bracket of . and y is denoted by [.], and the map y ? [.] by ad ..
6#
發(fā)表于 2025-3-22 14:53:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:38 | 只看該作者
Gerd Steierwald,Hans-Dieter KünneIn this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
8#
發(fā)表于 2025-3-23 00:53:39 | 只看該作者
Folgen und Wirkungen des VerkehrsIn this chapter (apart from Sec. 6) the ground field is the field C of complex numbers.
9#
發(fā)表于 2025-3-23 05:24:11 | 只看該作者
Erhebungen zur VerkehrsnachfrageIn this chapter (apart from Sec. 17) the ground field is the field . of real numbers. The vector spaces considered are all finite dimensional.
10#
發(fā)表于 2025-3-23 06:44:08 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 16:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淅川县| 临朐县| 石柱| 阿荣旗| 巍山| 保康县| 甘南县| 周宁县| 巴林右旗| 江城| 大冶市| 静海县| 高安市| 白朗县| 古丈县| 武威市| 东丰县| 江陵县| 龙州县| 贡觉县| 漳平市| 峨眉山市| 西丰县| 双牌县| 阿尔山市| 平塘县| 麦盖提县| 黄浦区| 赣州市| 泌阳县| 海南省| 菏泽市| 湘潭县| 嵩明县| 明星| 文水县| 宁海县| 平度市| 台州市| 无棣县| 商丘市|