找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 1987 Springer Science+Business Media New York 1987 algebra.lie algebra.lie group.r

[復(fù)制鏈接]
樓主: memoir
11#
發(fā)表于 2025-3-23 11:09:59 | 只看該作者
Folgen und Wirkungen des VerkehrsIn this chapter, g denotes a complex semisimple Lie algebra, h a Cartan subalgebra of g, and . the corresponding root system. We choose a base . = {..,...,..} of ., and we denote by .. the set of positive roots (with respect to .).
12#
發(fā)表于 2025-3-23 15:35:40 | 只看該作者
Folgen und Wirkungen des VerkehrsThis chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
13#
發(fā)表于 2025-3-23 20:25:47 | 只看該作者
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Secs. 7 and 8 we assume that . has characteristic O. The Lie bracket of . and y is denoted by [.], and the map y ? [.] by ad ..
14#
發(fā)表于 2025-3-24 01:56:20 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:04 | 只看該作者
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
16#
發(fā)表于 2025-3-24 08:28:51 | 只看該作者
The Algebra sl2 and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field C of complex numbers.
17#
發(fā)表于 2025-3-24 14:33:55 | 只看該作者
Root Systems,In this chapter (apart from Sec. 17) the ground field is the field . of real numbers. The vector spaces considered are all finite dimensional.
18#
發(fā)表于 2025-3-24 17:11:03 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:08 | 只看該作者
Linear Representations of Semisimple Lie Algebras,In this chapter, g denotes a complex semisimple Lie algebra, h a Cartan subalgebra of g, and . the corresponding root system. We choose a base . = {..,...,..} of ., and we denote by .. the set of positive roots (with respect to .).
20#
發(fā)表于 2025-3-25 00:57:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙江县| 石阡县| 濉溪县| 东宁县| 安陆市| 佛坪县| 新郑市| 越西县| 深水埗区| 通山县| 乌拉特中旗| 富宁县| 阿坝县| 鹤庆县| 砀山县| 都匀市| 永兴县| 仲巴县| 长宁县| 井研县| 阳西县| 普兰店市| 东台市| 叶城县| 万盛区| 沁阳市| 彩票| 肇庆市| 丽水市| 贵阳市| 安远县| 五原县| 翼城县| 邻水| 肇东市| 汉阴县| 衡山县| 梅河口市| 嘉峪关市| 错那县| 鞍山市|