找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 13:36:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:21:56 | 只看該作者
,Anlagen für den ruhenden Kraftverkehr,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
13#
發(fā)表于 2025-3-23 20:43:15 | 只看該作者
https://doi.org/10.1007/978-3-662-25020-4This chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
14#
發(fā)表于 2025-3-24 01:31:01 | 只看該作者
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Sees. 7 and 8 we assume that . has characteristic 0. The Lie bracket of . and . is denoted by [.], and the map . → [.] by ad ..
15#
發(fā)表于 2025-3-24 05:58:02 | 只看該作者
Semisimple Lie Algebras (General Theorems),In this chapter, the base field . is a field of characteristic zero.The Lie algebras and vector spaces considered have finite dimension over ..
16#
發(fā)表于 2025-3-24 10:31:31 | 只看該作者
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
17#
發(fā)表于 2025-3-24 11:25:10 | 只看該作者
The Algebra , and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers.
18#
發(fā)表于 2025-3-24 16:01:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:37 | 只看該作者
Structure of Semisimple Lie Algebras,Throughout this chapter, .denotes a ., and . a . of . (cf. Chap. III).
20#
發(fā)表于 2025-3-25 02:30:43 | 只看該作者
Linear Representations of Semisimple Lie Algebras,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌苏市| 偃师市| 云浮市| 博野县| 丹凤县| 阳信县| 泸水县| 安乡县| 宝清县| 崇州市| 琼中| 南皮县| 古交市| 左云县| 和政县| 浦北县| 清徐县| 迁安市| 调兵山市| 汨罗市| 平陆县| 讷河市| 金阳县| 黑水县| 香格里拉县| 祁连县| 梅河口市| 沧州市| 六安市| 上高县| 玉林市| 镇赉县| 永顺县| 枝江市| 昌平区| 丰原市| 澜沧| 常德市| 延吉市| 上高县| 江西省|