找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[復制鏈接]
查看: 41730|回復: 41
樓主
發(fā)表于 2025-3-21 19:26:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Semisimple Lie Algebras
編輯Jean-Pierre Serre
視頻videohttp://file.papertrans.cn/232/231532/231532.mp4
概述Includes supplementary material:
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Complex Semisimple Lie Algebras;  Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres
描述These notes are a record of a course given in Algiers from 10th to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franl(oise Pecha who was responsible for the typing of the manuscript.
出版日期Book 2001
關鍵詞Lie algebra; Lie algebras; Matrix; Representation theory; algebra; group theory
版次1
doihttps://doi.org/10.1007/978-3-642-56884-8
isbn_softcover978-3-642-63222-8
isbn_ebook978-3-642-56884-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書目名稱Complex Semisimple Lie Algebras影響因子(影響力)




書目名稱Complex Semisimple Lie Algebras影響因子(影響力)學科排名




書目名稱Complex Semisimple Lie Algebras網(wǎng)絡公開度




書目名稱Complex Semisimple Lie Algebras網(wǎng)絡公開度學科排名




書目名稱Complex Semisimple Lie Algebras被引頻次




書目名稱Complex Semisimple Lie Algebras被引頻次學科排名




書目名稱Complex Semisimple Lie Algebras年度引用




書目名稱Complex Semisimple Lie Algebras年度引用學科排名




書目名稱Complex Semisimple Lie Algebras讀者反饋




書目名稱Complex Semisimple Lie Algebras讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:28 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/c/image/231532.jpg
板凳
發(fā)表于 2025-3-22 02:24:09 | 只看該作者
https://doi.org/10.1007/978-3-642-56884-8Lie algebra; Lie algebras; Matrix; Representation theory; algebra; group theory
地板
發(fā)表于 2025-3-22 05:59:01 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:02 | 只看該作者
Complex Semisimple Lie Algebras978-3-642-56884-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
6#
發(fā)表于 2025-3-22 15:19:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:26:53 | 只看該作者
8#
發(fā)表于 2025-3-22 22:20:26 | 只看該作者
9#
發(fā)表于 2025-3-23 04:53:15 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:50 | 只看該作者
https://doi.org/10.1007/978-3-642-94763-6In this chapter (apart from Sec. 17) the ground field is the field . of real numbers. The vector spaces considered are all finite dimensional.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武鸣县| 大英县| 房产| 固安县| 高要市| 兴化市| 泸西县| 赤峰市| 沈丘县| 勐海县| 桓仁| 柳林县| 临湘市| 鹤壁市| 沙河市| 江源县| 太湖县| 聂荣县| 桦南县| 齐齐哈尔市| 故城县| 巩义市| 乡城县| 西充县| 临潭县| 皋兰县| 桂阳县| 漳州市| 扎赉特旗| 杭锦后旗| 双鸭山市| 鹰潭市| 文水县| 富锦市| 托里县| 获嘉县| 芷江| 衡阳市| 梓潼县| SHOW| 江油市|