找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Semisimple Lie Algebras; Jean-Pierre Serre Book 2001 Springer-Verlag Berlin Heidelberg 2001 Lie algebra.Lie algebras.Matrix.Repres

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 13:36:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:21:56 | 只看該作者
,Anlagen für den ruhenden Kraftverkehr,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
13#
發(fā)表于 2025-3-23 20:43:15 | 只看該作者
https://doi.org/10.1007/978-3-662-25020-4This chapter contains no proofs. All the Lie groups considered (except in Sec. 7) are . groups.
14#
發(fā)表于 2025-3-24 01:31:01 | 只看該作者
Nilpotent Lie Algebras and Solvable Lie Algebras,The Lie algebras considered in this chapter are finite-dimensional algebras over a field .. In Sees. 7 and 8 we assume that . has characteristic 0. The Lie bracket of . and . is denoted by [.], and the map . → [.] by ad ..
15#
發(fā)表于 2025-3-24 05:58:02 | 只看該作者
Semisimple Lie Algebras (General Theorems),In this chapter, the base field . is a field of characteristic zero.The Lie algebras and vector spaces considered have finite dimension over ..
16#
發(fā)表于 2025-3-24 10:31:31 | 只看該作者
Cartan Subalgebras,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers. The Lie algebras considered are finite dimensional.
17#
發(fā)表于 2025-3-24 11:25:10 | 只看該作者
The Algebra , and Its Representations,In this chapter (apart from Sec. 6) the ground field is the field . of complex numbers.
18#
發(fā)表于 2025-3-24 16:01:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:37 | 只看該作者
Structure of Semisimple Lie Algebras,Throughout this chapter, .denotes a ., and . a . of . (cf. Chap. III).
20#
發(fā)表于 2025-3-25 02:30:43 | 只看該作者
Linear Representations of Semisimple Lie Algebras,In this chapter, . denotes a complex semisimple Lie algebra, . a Cartan subalgebra of . and . the corresponding root system. We choose a base . = α.,…, α. of ., and we denote by . the set of positive roots (with respect to .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓尼县| 太康县| 玛曲县| 嵊泗县| 德阳市| 无极县| 全南县| 库伦旗| 张家港市| 洛川县| 北碚区| 隆昌县| 徐汇区| 乐都县| 华宁县| 江津市| 福泉市| 米脂县| 乡宁县| 太湖县| 许昌市| 蓬溪县| 曲阜市| 璧山县| 孝昌县| 巴塘县| 西畴县| 宝鸡市| 奇台县| 环江| 阿克苏市| 黑龙江省| 汝州市| 独山县| 桐庐县| 沛县| 东港市| 崇文区| 新竹县| 昭苏县| 凤冈县|