找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Potential Theory; Paul M. Gauthier,Gert Sabidussi Book 1994 Springer Science+Business Media Dordrecht 1994 Banach space.Hilbert sp

[復(fù)制鏈接]
查看: 26314|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:41:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Potential Theory
編輯Paul M. Gauthier,Gert Sabidussi
視頻videohttp://file.papertrans.cn/232/231523/231523.mp4
叢書名稱Nato Science Series C:
圖書封面Titlebook: Complex Potential Theory;  Paul M. Gauthier,Gert Sabidussi Book 1994 Springer Science+Business Media Dordrecht 1994 Banach space.Hilbert sp
出版日期Book 1994
關(guān)鍵詞Banach space; Hilbert space; Potential theory; analytic function; spectral theory
版次1
doihttps://doi.org/10.1007/978-94-011-0934-5
isbn_softcover978-94-010-4403-5
isbn_ebook978-94-011-0934-5Series ISSN 1389-2185
issn_series 1389-2185
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書目名稱Complex Potential Theory影響因子(影響力)




書目名稱Complex Potential Theory影響因子(影響力)學(xué)科排名




書目名稱Complex Potential Theory網(wǎng)絡(luò)公開度




書目名稱Complex Potential Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Potential Theory被引頻次




書目名稱Complex Potential Theory被引頻次學(xué)科排名




書目名稱Complex Potential Theory年度引用




書目名稱Complex Potential Theory年度引用學(xué)科排名




書目名稱Complex Potential Theory讀者反饋




書目名稱Complex Potential Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:13 | 只看該作者
Stadtplanung im Geschlechterkampfn hypotheses. We study the singularities of plurisubharmonic functions using methods from convexity theory. Then in the final chapter we generalize the classical notions of order and type of an entire function of finite order to functions of arbitrarily fast growth.
板凳
發(fā)表于 2025-3-22 04:26:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:26:08 | 只看該作者
Institutionelle Grundlagen der Stadtplanung,yze the Cauchy problem for solutions of elliptic equations. In section 4 we give a brief exposition of the theory of bases with double orthogonality which were elaborated as tools for constructive approximations. In section 5 we proceed with the study of the Cauchy problem by the modified Fischer-Reisz equations method.
6#
發(fā)表于 2025-3-22 16:03:24 | 只看該作者
Chebyshev-type quadratures: use of complex analysis and potential theory,y are used to support the conjecture that this field can be made as small as exp in the case of R.. We finally present a logarithmic convexity theorem for supremum norms of harmonic functions. Many of the recent results represent joint work with J.L.H. Meyers. The notes include a dozen open problems.
7#
發(fā)表于 2025-3-22 18:53:59 | 只看該作者
General aspects of potential theory with respect to problems of differential equations,yze the Cauchy problem for solutions of elliptic equations. In section 4 we give a brief exposition of the theory of bases with double orthogonality which were elaborated as tools for constructive approximations. In section 5 we proceed with the study of the Cauchy problem by the modified Fischer-Reisz equations method.
8#
發(fā)表于 2025-3-22 23:58:11 | 只看該作者
9#
發(fā)表于 2025-3-23 04:38:15 | 只看該作者
Analytic multifunctions and their applications,pproximation in ?., to spectral interpolation and to local spectrum. Recently, important applications were given to non-associative Jordan-Banach algebras and to complex dynamics, that is, the study of the variation of Julia sets depending on a parameter, which are described in the last two chapters
10#
發(fā)表于 2025-3-23 08:58:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰县| 祁阳县| 象山县| 巩义市| 连平县| 延长县| 盐池县| 深州市| 天长市| 江西省| 河间市| 凯里市| 珠海市| 鹤壁市| 喀喇沁旗| 泗水县| 通河县| 杨浦区| 平顺县| 巴里| 惠安县| 澳门| 荆门市| 安龙县| 高要市| 玉环县| 龙陵县| 辽阳县| 岳池县| 山东| 乐陵市| 宣武区| 肃南| 广州市| 宁明县| 九龙县| 青浦区| 蓬莱市| 日喀则市| 喀什市| 翼城县|