找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Potential Theory; Paul M. Gauthier,Gert Sabidussi Book 1994 Springer Science+Business Media Dordrecht 1994 Banach space.Hilbert sp

[復(fù)制鏈接]
查看: 26320|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:41:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Potential Theory
編輯Paul M. Gauthier,Gert Sabidussi
視頻videohttp://file.papertrans.cn/232/231523/231523.mp4
叢書(shū)名稱Nato Science Series C:
圖書(shū)封面Titlebook: Complex Potential Theory;  Paul M. Gauthier,Gert Sabidussi Book 1994 Springer Science+Business Media Dordrecht 1994 Banach space.Hilbert sp
出版日期Book 1994
關(guān)鍵詞Banach space; Hilbert space; Potential theory; analytic function; spectral theory
版次1
doihttps://doi.org/10.1007/978-94-011-0934-5
isbn_softcover978-94-010-4403-5
isbn_ebook978-94-011-0934-5Series ISSN 1389-2185
issn_series 1389-2185
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

書(shū)目名稱Complex Potential Theory影響因子(影響力)




書(shū)目名稱Complex Potential Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Potential Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Potential Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Potential Theory被引頻次




書(shū)目名稱Complex Potential Theory被引頻次學(xué)科排名




書(shū)目名稱Complex Potential Theory年度引用




書(shū)目名稱Complex Potential Theory年度引用學(xué)科排名




書(shū)目名稱Complex Potential Theory讀者反饋




書(shū)目名稱Complex Potential Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:13 | 只看該作者
Stadtplanung im Geschlechterkampfn hypotheses. We study the singularities of plurisubharmonic functions using methods from convexity theory. Then in the final chapter we generalize the classical notions of order and type of an entire function of finite order to functions of arbitrarily fast growth.
板凳
發(fā)表于 2025-3-22 04:26:51 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:50 | 只看該作者
5#
發(fā)表于 2025-3-22 09:26:08 | 只看該作者
Institutionelle Grundlagen der Stadtplanung,yze the Cauchy problem for solutions of elliptic equations. In section 4 we give a brief exposition of the theory of bases with double orthogonality which were elaborated as tools for constructive approximations. In section 5 we proceed with the study of the Cauchy problem by the modified Fischer-Reisz equations method.
6#
發(fā)表于 2025-3-22 16:03:24 | 只看該作者
Chebyshev-type quadratures: use of complex analysis and potential theory,y are used to support the conjecture that this field can be made as small as exp in the case of R.. We finally present a logarithmic convexity theorem for supremum norms of harmonic functions. Many of the recent results represent joint work with J.L.H. Meyers. The notes include a dozen open problems.
7#
發(fā)表于 2025-3-22 18:53:59 | 只看該作者
General aspects of potential theory with respect to problems of differential equations,yze the Cauchy problem for solutions of elliptic equations. In section 4 we give a brief exposition of the theory of bases with double orthogonality which were elaborated as tools for constructive approximations. In section 5 we proceed with the study of the Cauchy problem by the modified Fischer-Reisz equations method.
8#
發(fā)表于 2025-3-22 23:58:11 | 只看該作者
9#
發(fā)表于 2025-3-23 04:38:15 | 只看該作者
Analytic multifunctions and their applications,pproximation in ?., to spectral interpolation and to local spectrum. Recently, important applications were given to non-associative Jordan-Banach algebras and to complex dynamics, that is, the study of the variation of Julia sets depending on a parameter, which are described in the last two chapters
10#
發(fā)表于 2025-3-23 08:58:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大冶市| 安岳县| 镇宁| 嘉义市| 抚州市| 积石山| 北安市| 东丰县| 华蓥市| 闸北区| 新疆| 弥渡县| 绿春县| 德安县| 贵南县| 黄龙县| 永年县| 通河县| 安陆市| 湾仔区| 花莲县| 民和| 白河县| 西宁市| 汝州市| 永定县| 福鼎市| 东宁县| 峨眉山市| 宜兰县| 平顶山市| 阳高县| 客服| 增城市| 安达市| 孟津县| 漠河县| 祁阳县| 宁晋县| 象州县| 孙吴县|