找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers; An Introduction for J?rg Kortemeyer Book 2021 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2021 Number Ran

[復(fù)制鏈接]
樓主: HAND
11#
發(fā)表于 2025-3-23 10:06:56 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,ll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
12#
發(fā)表于 2025-3-23 14:52:20 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:57 | 只看該作者
Romanischer Bereich, Frankreichll learn a geometric interpretation of complex numbers. Since the complex number . is defined using two real numbers . and ., it makes sense to draw a complex number in a plane, showing a connection between complex numbers and two-dimensional vectors. After studying this chapter, you will be able to
14#
發(fā)表于 2025-3-24 01:50:23 | 只看該作者
15#
發(fā)表于 2025-3-24 06:17:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:48 | 只看該作者
Book 2021on by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors..
17#
發(fā)表于 2025-3-24 11:12:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:43:34 | 只看該作者
19#
發(fā)表于 2025-3-24 20:43:45 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:53 | 只看該作者
,Cartesian Representation—Algebra and Geometry of Complex Numbers,he previous chapter, complex numbers are an extension of real numbers. In this chapter, you will see that a complex number is an ordered pair of real numbers. This chapter introduces the first representation of complex numbers, which is especially good for addition and subtraction. As explained in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松滋市| 云安县| 安塞县| 岱山县| 南京市| 林芝县| 深圳市| 义乌市| 石渠县| 同江市| 油尖旺区| 元氏县| 雷州市| 凉城县| 长武县| 浦江县| 郎溪县| 观塘区| 青阳县| 青冈县| 砚山县| 湟中县| 杨浦区| 襄汾县| 尉氏县| 万州区| 裕民县| 扬州市| 乐平市| 冷水江市| 库尔勒市| 浦东新区| 溧阳市| 新绛县| 东莞市| 防城港市| 葫芦岛市| 南阳市| 隆安县| 阳新县| 曲阜市|